A Transferable Force Controller based on Prescribed Performance for Contact Establishment in Robotic Assembly Tasks*

Lorenz Halt, Fengjunjie Pan, Philipp Tenbrock, A. Pott, T. Seel
{"title":"A Transferable Force Controller based on Prescribed Performance for Contact Establishment in Robotic Assembly Tasks*","authors":"Lorenz Halt, Fengjunjie Pan, Philipp Tenbrock, A. Pott, T. Seel","doi":"10.1109/COASE.2019.8843020","DOIUrl":null,"url":null,"abstract":"In industrial robotics, controller parameters for force control must be adjusted to the specific robot that performs a task and they must be re-adjusted when the same task is to be performed by another robot. We address this challenge by proposing a transferable force controller for contact establishment between robot and surface. The controller is implemented based on task frame formalism. The proposed controller is based on prescribed performance control (PPC) and does not rely on a dynamic model of the environment. Due to the inherent robustness of PPC, it can be used to ensure similar performance for the same task across different robots and environments. The proposed controller is validated experimentally in a simple contact establishment task performed by three different robots (Universal Robots UR5, Franka Emika Panda, Denso Wave VS087) and three different board materials providing different stiffness (steel, aluminum, PVC). The PPC is found to yield an up to two orders of magnitude smaller variance of closed-loop settling time across all robots and materials than a conventional impedance controller.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"34 1","pages":"830-835"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In industrial robotics, controller parameters for force control must be adjusted to the specific robot that performs a task and they must be re-adjusted when the same task is to be performed by another robot. We address this challenge by proposing a transferable force controller for contact establishment between robot and surface. The controller is implemented based on task frame formalism. The proposed controller is based on prescribed performance control (PPC) and does not rely on a dynamic model of the environment. Due to the inherent robustness of PPC, it can be used to ensure similar performance for the same task across different robots and environments. The proposed controller is validated experimentally in a simple contact establishment task performed by three different robots (Universal Robots UR5, Franka Emika Panda, Denso Wave VS087) and three different board materials providing different stiffness (steel, aluminum, PVC). The PPC is found to yield an up to two orders of magnitude smaller variance of closed-loop settling time across all robots and materials than a conventional impedance controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人装配任务中基于设定性能的可转移力控制器*
在工业机器人中,用于力控制的控制器参数必须调整到执行任务的特定机器人,并且当相同的任务由另一个机器人执行时,它们必须重新调整。为了解决这一问题,我们提出了一种可转移力控制器,用于机器人与表面之间的接触建立。控制器是基于任务框架形式化实现的。所提出的控制器基于规定的性能控制(PPC),不依赖于环境的动态模型。由于PPC固有的鲁棒性,它可以用于确保在不同机器人和环境中完成相同任务的相似性能。通过三种不同的机器人(Universal robots UR5, Franka Emika Panda, Denso Wave VS087)和三种不同的板材料(钢,铝,PVC)执行简单的接触建立任务,对所提出的控制器进行了实验验证。研究发现,与传统的阻抗控制器相比,PPC在所有机器人和材料上产生的闭环稳定时间方差要小两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A proposed mapping method for aligning machine execution data to numerical control code optimizing outpatient Department Staffing Level using Multi-Fidelity Models Advanced Sensor and Target Development to Support Robot Accuracy Degradation Assessment Multi-Task Hierarchical Imitation Learning for Home Automation Deep Reinforcement Learning of Robotic Precision Insertion Skill Accelerated by Demonstrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1