{"title":"Taylor’s power law for the N-stars network evolution model","authors":"I. Fazekas, Csaba Noszály, Noémi Uzonyi","doi":"10.15559/19-VMSTA137","DOIUrl":null,"url":null,"abstract":"Taylor's power law states that the variance function decays as a power law. It is observed for population densities of species in ecology. For random networks another power law, that is, the power law degree distribution is widely studied. In this paper the original Taylor's power law is considered for random networks. A precise mathematical proof is presented that Taylor's power law is asymptotically true for the $N$-stars network evolution model.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"37 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/19-VMSTA137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Taylor's power law states that the variance function decays as a power law. It is observed for population densities of species in ecology. For random networks another power law, that is, the power law degree distribution is widely studied. In this paper the original Taylor's power law is considered for random networks. A precise mathematical proof is presented that Taylor's power law is asymptotically true for the $N$-stars network evolution model.