Victor R. F. Miranda, L. Mozelli, A. A. Neto, G. Freitas
{"title":"On the Robust Longitudinal Trajectory Tracking for Load Transportation Vehicles on Uneven Terrains","authors":"Victor R. F. Miranda, L. Mozelli, A. A. Neto, G. Freitas","doi":"10.1109/ICAR46387.2019.8981641","DOIUrl":null,"url":null,"abstract":"The longitudinal trajectory tracking for small Unmanned Ground Vehicles (UGVs) subject to real-world disturbances is addressed, by considering an anisotropic ground friction and the variation of its own mass during transportation. A methodology was proposed to perform the design of the controller in the Proportional-Integral-Derivative (PID) format, which is robust to parametric uncertainties and minimizes output disturbances. Next, a small ground platform for load delivery tasks has been developed, equipped with low-cost navigation sensors and onboard computers. Finally, simulated and real-world experiments illustrate the effectiveness of this application under different scenarios, by combining distinct conditions of friction, payload, and terrain profiles.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"34 1","pages":"320-325"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The longitudinal trajectory tracking for small Unmanned Ground Vehicles (UGVs) subject to real-world disturbances is addressed, by considering an anisotropic ground friction and the variation of its own mass during transportation. A methodology was proposed to perform the design of the controller in the Proportional-Integral-Derivative (PID) format, which is robust to parametric uncertainties and minimizes output disturbances. Next, a small ground platform for load delivery tasks has been developed, equipped with low-cost navigation sensors and onboard computers. Finally, simulated and real-world experiments illustrate the effectiveness of this application under different scenarios, by combining distinct conditions of friction, payload, and terrain profiles.