{"title":"Diet and impacts of non-native fallow deer (Dama dama) on pastoral properties during severe drought","authors":"N. E. Davis, D. Forsyth, A. Bengsen","doi":"10.1071/WR22106","DOIUrl":null,"url":null,"abstract":"ABSTRACT Context There is concern about potential competition between non-native fallow deer (Dama dama) and livestock for food, particularly during times of low rainfall when pasture is scarce. Aim We aimed to estimate the extent to which a high-density fallow deer population (~37 deer per km2) competed with livestock for food during a severe drought on pastoral properties on the Liverpool Plains, New South Wales, Australia. Methods We collected rumen contents from 125 fallow deer shot from helicopters during control operations in June and August 2018, and used microhistology to quantify their diets. We then used the diet data to adjust published estimates of stock unit equivalence from farmed fallow deer. Fallow deer sex and age class abundances and stock unit equivalences were multiplied to estimate the grazing pressure of the fallow deer population pre- and post-control relative to recommended sheep and cattle stocking rates. Finally, we estimated density–impact relationships for fallow deer. Key results Fallow deer diet was dominated by monocots (primarily grasses), but some individuals consumed large amounts of dicots (commonly Eucalyptus). Fallow deer were grazers to intermediate mixed feeders. Fallow deer dry-sheep equivalents (DSEs, based on a 50-kg merino wether) varied from 1.01 (juveniles) to 1.85 (adult females and adult males). Assuming complete diet overlap, the pre-control fallow deer population was equivalent to approximately 60.3 DSEs per km2 and reduced the potential stocking rate of domestic livestock by 50.2%. Discounting the fallow deer DSEs by the amount of browse in the diet resulted in a pre-control population of 45.7 DSEs per km2. The helicopter-based shooting reduced the fallow deer population by 26%, increasing the stocking rate in natural pasture by 22.0% (complete overlap) or 13.8% (discounting for browse). Conclusions When food is limiting, fallow deer at high density can exert strong competitive pressure on livestock, reducing carrying capacity. Browsing, including on Eucalyptus, likely helped fallow deer to persist at high densities during the severe drought of 2018, when properties had destocked. Implications Helicopter-based shooting reduced the competitive effects of fallow deer on livestock in our study area to only a small extent, but more intensive shooting would have led to a greater reduction. The helicopter-based shooting of deer was received positively by landholders at a time of severe stress, suggesting that deer control in agricultural areas can have other important benefits.","PeriodicalId":23971,"journal":{"name":"Wildlife Research","volume":"18 1","pages":"701 - 715"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wildlife Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/WR22106","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Context There is concern about potential competition between non-native fallow deer (Dama dama) and livestock for food, particularly during times of low rainfall when pasture is scarce. Aim We aimed to estimate the extent to which a high-density fallow deer population (~37 deer per km2) competed with livestock for food during a severe drought on pastoral properties on the Liverpool Plains, New South Wales, Australia. Methods We collected rumen contents from 125 fallow deer shot from helicopters during control operations in June and August 2018, and used microhistology to quantify their diets. We then used the diet data to adjust published estimates of stock unit equivalence from farmed fallow deer. Fallow deer sex and age class abundances and stock unit equivalences were multiplied to estimate the grazing pressure of the fallow deer population pre- and post-control relative to recommended sheep and cattle stocking rates. Finally, we estimated density–impact relationships for fallow deer. Key results Fallow deer diet was dominated by monocots (primarily grasses), but some individuals consumed large amounts of dicots (commonly Eucalyptus). Fallow deer were grazers to intermediate mixed feeders. Fallow deer dry-sheep equivalents (DSEs, based on a 50-kg merino wether) varied from 1.01 (juveniles) to 1.85 (adult females and adult males). Assuming complete diet overlap, the pre-control fallow deer population was equivalent to approximately 60.3 DSEs per km2 and reduced the potential stocking rate of domestic livestock by 50.2%. Discounting the fallow deer DSEs by the amount of browse in the diet resulted in a pre-control population of 45.7 DSEs per km2. The helicopter-based shooting reduced the fallow deer population by 26%, increasing the stocking rate in natural pasture by 22.0% (complete overlap) or 13.8% (discounting for browse). Conclusions When food is limiting, fallow deer at high density can exert strong competitive pressure on livestock, reducing carrying capacity. Browsing, including on Eucalyptus, likely helped fallow deer to persist at high densities during the severe drought of 2018, when properties had destocked. Implications Helicopter-based shooting reduced the competitive effects of fallow deer on livestock in our study area to only a small extent, but more intensive shooting would have led to a greater reduction. The helicopter-based shooting of deer was received positively by landholders at a time of severe stress, suggesting that deer control in agricultural areas can have other important benefits.
期刊介绍:
Wildlife Research represents an international forum for the publication of research and debate on the ecology, management and conservation of wild animals in natural and modified habitats. The journal combines basic research in wildlife ecology with advances in science-based management practice. Subject areas include: applied ecology; conservation biology; ecosystem management; management of over-abundant, pest and invasive species; global change and wildlife management; diseases and their impacts on wildlife populations; human dimensions of management and conservation; assessing management outcomes; and the implications of wildlife research for policy development. Readers can expect a range of papers covering well-structured field studies, manipulative experiments, and analytical and modelling studies. All articles aim to improve the practice of wildlife management and contribute conceptual advances to our knowledge and understanding of wildlife ecology.
Wildlife Research is a vital resource for wildlife scientists, students and managers, applied ecologists, conservation biologists, environmental consultants and NGOs and government policy advisors.
Wildlife Research is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.