Selecting the best VM across multiple public clouds: a data-driven performance modeling approach

N. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton J. Smith, R. Katz
{"title":"Selecting the best VM across multiple public clouds: a data-driven performance modeling approach","authors":"N. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton J. Smith, R. Katz","doi":"10.1145/3127479.3131614","DOIUrl":null,"url":null,"abstract":"Users of cloud services are presented with a bewildering choice of VM types and the choice of VM can have significant implications on performance and cost. In this paper we address the fundamental problem of accurately and economically choosing the best VM for a given workload and user goals. To address the problem of optimal VM selection, we present PARIS, a data-driven system that uses a novel hybrid offline and online data collection and modeling framework to provide accurate performance estimates with minimal data collection. PARIS is able to predict workload performance for different user-specified metrics, and resulting costs for a wide range of VM types and workloads across multiple cloud providers. When compared to sophisticated baselines, including collaborative filtering and a linear interpolation model using measured workload performance on two VM types, PARIS produces significantly better estimates of performance. For instance, it reduces runtime prediction error by a factor of 4 for some workloads on both AWS and Azure. The increased accuracy translates into a 45% reduction in user cost while maintaining performance.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3131614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 162

Abstract

Users of cloud services are presented with a bewildering choice of VM types and the choice of VM can have significant implications on performance and cost. In this paper we address the fundamental problem of accurately and economically choosing the best VM for a given workload and user goals. To address the problem of optimal VM selection, we present PARIS, a data-driven system that uses a novel hybrid offline and online data collection and modeling framework to provide accurate performance estimates with minimal data collection. PARIS is able to predict workload performance for different user-specified metrics, and resulting costs for a wide range of VM types and workloads across multiple cloud providers. When compared to sophisticated baselines, including collaborative filtering and a linear interpolation model using measured workload performance on two VM types, PARIS produces significantly better estimates of performance. For instance, it reduces runtime prediction error by a factor of 4 for some workloads on both AWS and Azure. The increased accuracy translates into a 45% reduction in user cost while maintaining performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨多个公共云选择最佳VM:数据驱动的性能建模方法
云服务的用户面临着令人困惑的虚拟机类型选择,而虚拟机的选择可能对性能和成本产生重大影响。在本文中,我们解决了准确和经济地为给定的工作负载和用户目标选择最佳VM的基本问题。为了解决最佳VM选择问题,我们提出了PARIS,这是一个数据驱动的系统,它使用一种新颖的离线和在线混合数据收集和建模框架,以最少的数据收集提供准确的性能估计。PARIS能够预测不同用户指定指标的工作负载性能,以及跨多个云提供商的各种VM类型和工作负载的最终成本。与复杂的基线(包括协作过滤和使用在两种VM类型上测量的工作负载性能的线性插值模型)相比,PARIS产生了更好的性能估计。例如,对于AWS和Azure上的某些工作负载,它将运行时预测误差减少了1 / 4。精确度的提高意味着在保持性能的同时降低了45%的用户成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Janus: supporting heterogeneous power management in virtualized environments On-demand virtualization for live migration in bare metal cloud Preserving I/O prioritization in virtualized OSes To edge or not to edge? Indy: a software system for the dense cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1