Personalized influence maximization on social networks

Jing Guo, Peng Zhang, Chuan Zhou, Yanan Cao, Li Guo
{"title":"Personalized influence maximization on social networks","authors":"Jing Guo, Peng Zhang, Chuan Zhou, Yanan Cao, Li Guo","doi":"10.1145/2505515.2505571","DOIUrl":null,"url":null,"abstract":"In this paper, we study a new problem on social network influence maximization. The problem is defined as, given a target user $w$, finding the top-k most influential nodes for the user. Different from existing influence maximization works which aim to find a small subset of nodes to maximize the spread of influence over the entire network (i.e., global optima), our problem aims to find a small subset of nodes which can maximize the influence spread to a given target user (i.e., local optima). The solution is critical for personalized services on social networks, where fully understanding of each specific user is essential. Although some global influence maximization models can be narrowed down as the solution, these methods often bias to the target node itself. To this end, in this paper we present a local influence maximization solution. We first provide a random function, with low variance guarantee, to randomly simulate the objective function of local influence maximization. Then, we present efficient algorithms with approximation guarantee. For online social network applications, we also present a scalable approximate algorithm by exploring the local cascade structure of the target user. We test the proposed algorithms on several real-world social networks. Experimental results validate the performance of the proposed algorithms.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

In this paper, we study a new problem on social network influence maximization. The problem is defined as, given a target user $w$, finding the top-k most influential nodes for the user. Different from existing influence maximization works which aim to find a small subset of nodes to maximize the spread of influence over the entire network (i.e., global optima), our problem aims to find a small subset of nodes which can maximize the influence spread to a given target user (i.e., local optima). The solution is critical for personalized services on social networks, where fully understanding of each specific user is essential. Although some global influence maximization models can be narrowed down as the solution, these methods often bias to the target node itself. To this end, in this paper we present a local influence maximization solution. We first provide a random function, with low variance guarantee, to randomly simulate the objective function of local influence maximization. Then, we present efficient algorithms with approximation guarantee. For online social network applications, we also present a scalable approximate algorithm by exploring the local cascade structure of the target user. We test the proposed algorithms on several real-world social networks. Experimental results validate the performance of the proposed algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在社交网络上实现个性化影响力最大化
本文研究了一个新的社会网络影响最大化问题。这个问题被定义为,给定一个目标用户$w$,为该用户找到top-k个最具影响力的节点。现有的影响力最大化工作旨在找到一小部分节点来最大化影响力在整个网络上的传播(即全局最优),而我们的问题旨在找到一小部分节点来最大化对给定目标用户的影响力传播(即局部最优)。该解决方案对于社交网络上的个性化服务至关重要,因为充分了解每个特定用户是必不可少的。尽管一些全局影响最大化模型可以缩小范围作为解决方案,但这些方法往往偏向于目标节点本身。为此,本文提出了一种局部影响最大化的求解方法。我们首先提供一个低方差保证的随机函数来随机模拟局部影响最大化的目标函数。然后,我们提出了具有近似保证的高效算法。对于在线社交网络应用,我们还通过探索目标用户的局部级联结构,提出了一种可扩展的近似算法。我们在几个真实的社交网络上测试了提出的算法。实验结果验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1