{"title":"In silico study identifies RO 28-2653 as a novel drug against SARS-CoV2 mutant strains","authors":"S. Mukherjee, Santanu Paul","doi":"10.1504/ijcbdd.2021.10045829","DOIUrl":null,"url":null,"abstract":"Introduction: Concerning the current pandemic situation, the world is facing due to the highly infectious coronavirus (SARS-CoV2), we aim to gain some insight into the pre-existing drugs and compounds for curing the disease. Method: Here, we have studied the interaction of 10 drug molecules by in silico study against three targets, Angiotensin Convertase Enzyme-2 receptor (ACE-2), main protease (Mpro) and RNA dependent RNA polymerase (RDRP) and further analysed the interaction of the best docked compound against spike mutants. Results: By analysing the protein-ligand interactions by docking, and molecular dynamics simulation, it proves that RO 28-2653 can be a potent candidate drug for future COVID treatment even against the mutant strains. Conclusion: The used drugs have been implicated in asthma, hypertension, etc., so repurposing these drugs can have a beneficial role on COVID-19, keeping in mind that any drug should be used in a certain prescribed dosage.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"1 1","pages":"457-480"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2021.10045829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Concerning the current pandemic situation, the world is facing due to the highly infectious coronavirus (SARS-CoV2), we aim to gain some insight into the pre-existing drugs and compounds for curing the disease. Method: Here, we have studied the interaction of 10 drug molecules by in silico study against three targets, Angiotensin Convertase Enzyme-2 receptor (ACE-2), main protease (Mpro) and RNA dependent RNA polymerase (RDRP) and further analysed the interaction of the best docked compound against spike mutants. Results: By analysing the protein-ligand interactions by docking, and molecular dynamics simulation, it proves that RO 28-2653 can be a potent candidate drug for future COVID treatment even against the mutant strains. Conclusion: The used drugs have been implicated in asthma, hypertension, etc., so repurposing these drugs can have a beneficial role on COVID-19, keeping in mind that any drug should be used in a certain prescribed dosage.