In silico study identifies RO 28-2653 as a novel drug against SARS-CoV2 mutant strains

S. Mukherjee, Santanu Paul
{"title":"In silico study identifies RO 28-2653 as a novel drug against SARS-CoV2 mutant strains","authors":"S. Mukherjee, Santanu Paul","doi":"10.1504/ijcbdd.2021.10045829","DOIUrl":null,"url":null,"abstract":"Introduction: Concerning the current pandemic situation, the world is facing due to the highly infectious coronavirus (SARS-CoV2), we aim to gain some insight into the pre-existing drugs and compounds for curing the disease. Method: Here, we have studied the interaction of 10 drug molecules by in silico study against three targets, Angiotensin Convertase Enzyme-2 receptor (ACE-2), main protease (Mpro) and RNA dependent RNA polymerase (RDRP) and further analysed the interaction of the best docked compound against spike mutants. Results: By analysing the protein-ligand interactions by docking, and molecular dynamics simulation, it proves that RO 28-2653 can be a potent candidate drug for future COVID treatment even against the mutant strains. Conclusion: The used drugs have been implicated in asthma, hypertension, etc., so repurposing these drugs can have a beneficial role on COVID-19, keeping in mind that any drug should be used in a certain prescribed dosage.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"1 1","pages":"457-480"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2021.10045829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Concerning the current pandemic situation, the world is facing due to the highly infectious coronavirus (SARS-CoV2), we aim to gain some insight into the pre-existing drugs and compounds for curing the disease. Method: Here, we have studied the interaction of 10 drug molecules by in silico study against three targets, Angiotensin Convertase Enzyme-2 receptor (ACE-2), main protease (Mpro) and RNA dependent RNA polymerase (RDRP) and further analysed the interaction of the best docked compound against spike mutants. Results: By analysing the protein-ligand interactions by docking, and molecular dynamics simulation, it proves that RO 28-2653 can be a potent candidate drug for future COVID treatment even against the mutant strains. Conclusion: The used drugs have been implicated in asthma, hypertension, etc., so repurposing these drugs can have a beneficial role on COVID-19, keeping in mind that any drug should be used in a certain prescribed dosage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机研究鉴定RO 28-2653是一种抗SARS-CoV2突变株的新药
导读:目前,由于传染性很强的冠状病毒(SARS-CoV2),世界正面临着大流行的形势,我们的目的是了解一些现有的药物和化合物,用于治疗这种疾病。方法:通过计算机实验研究了10种药物分子与血管紧张素转换酶-2受体(ACE-2)、主蛋白酶(Mpro)和RNA依赖性RNA聚合酶(RDRP) 3个靶点的相互作用,并进一步分析了最佳对接化合物与刺突突变体的相互作用。结果:通过对接分析蛋白质与配体的相互作用,并进行分子动力学模拟,证明RO 28-2653可以成为未来治疗COVID - 19的有效候选药物,即使是针对突变株。结论:使用的药物已经涉及哮喘、高血压等,因此重新利用这些药物可能对COVID-19有有益的作用,记住任何药物都应该按照一定的处方剂量使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Random forest with SMOTE and ensemble feature selection for cervical cancer diagnosis A review on speech organ diseases and cancer detection using artificial intelligence In silico phytochemical repurposing of natural molecules as entry inhibitors against RBD of the spike protein of SARS-CoV-2 using molecular docking studies Generation of 2D-QSAR and pharmacophore models for fishing better anti-leishmanial therapeutics Computational identification of personal genetic variants in an identical twin sisters' family
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1