Quantum algorithms based on the block-encoding framework for matrix functions by contour integrals

S. Takahira, A. Ohashi, T. Sogabe, T. Usuda
{"title":"Quantum algorithms based on the block-encoding framework for matrix functions by contour integrals","authors":"S. Takahira, A. Ohashi, T. Sogabe, T. Usuda","doi":"10.26421/qic22.11-12-4","DOIUrl":null,"url":null,"abstract":"he matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we propose a quantum algorithm for matrix functions based on a procedure to implement the linear combination of the inverses on quantum computers. Compared with the previous study [S. Takahira, A. Ohashi, T. Sogabe, and T.S. Usuda, Quant. Inf. Comput., \\textbf{20}, 1\\&2, 14--36, (Feb. 2020)] that proposed a quantum algorithm to compute a quantum state for the matrix function based on the circular contour centered at the origin, the quantum algorithm in the present paper can be applied to a more general contour. Moreover, the algorithm is described by the block-encoding framework. Similarly to the previous study, the algorithm can be applied even if the input matrix is not a Hermitian or normal matrix. This is an advantage compared with quantum singular value transformation.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"23 1","pages":"965-979"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.11-12-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

he matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we propose a quantum algorithm for matrix functions based on a procedure to implement the linear combination of the inverses on quantum computers. Compared with the previous study [S. Takahira, A. Ohashi, T. Sogabe, and T.S. Usuda, Quant. Inf. Comput., \textbf{20}, 1\&2, 14--36, (Feb. 2020)] that proposed a quantum algorithm to compute a quantum state for the matrix function based on the circular contour centered at the origin, the quantum algorithm in the present paper can be applied to a more general contour. Moreover, the algorithm is described by the block-encoding framework. Similarly to the previous study, the algorithm can be applied even if the input matrix is not a Hermitian or normal matrix. This is an advantage compared with quantum singular value transformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于等高积分矩阵函数块编码框架的量子算法
矩阵函数可由柯西积分公式定义,并可由移位矩阵的逆的线性组合用正交公式逼近。本文提出了一种在量子计算机上实现逆线性组合的矩阵函数量子算法。与以往研究相比[S;Takahira, A. Ohashi, T. Sogabe和T.S. Usuda, Quant. Inf. computer。[j], \textbf{20}, 1&2, 14—36,(2020年2月)]提出了一种基于以原点为中心的圆形轮廓计算矩阵函数量子态的量子算法,本文的量子算法可以应用于更一般的轮廓。该算法采用块编码框架进行描述。与之前的研究类似,即使输入矩阵不是厄米矩阵或正态矩阵,该算法也可以应用。这与量子奇异值变换相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quantization of interacting particle systems Guidelines to use the ICSM for developing quantum-classical systems A Comparative Analysis of Quantum-based Approaches for Scalable and Efficient Data mining in Cloud Environments On the quantum complexity of integration of a function with unknown singularity Site recurrence for continuous-time open quantum walks on the line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1