{"title":"Quantum algorithms based on the block-encoding framework for matrix functions by contour integrals","authors":"S. Takahira, A. Ohashi, T. Sogabe, T. Usuda","doi":"10.26421/qic22.11-12-4","DOIUrl":null,"url":null,"abstract":"he matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we propose a quantum algorithm for matrix functions based on a procedure to implement the linear combination of the inverses on quantum computers. Compared with the previous study [S. Takahira, A. Ohashi, T. Sogabe, and T.S. Usuda, Quant. Inf. Comput., \\textbf{20}, 1\\&2, 14--36, (Feb. 2020)] that proposed a quantum algorithm to compute a quantum state for the matrix function based on the circular contour centered at the origin, the quantum algorithm in the present paper can be applied to a more general contour. Moreover, the algorithm is described by the block-encoding framework. Similarly to the previous study, the algorithm can be applied even if the input matrix is not a Hermitian or normal matrix. This is an advantage compared with quantum singular value transformation.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"23 1","pages":"965-979"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.11-12-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
he matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we propose a quantum algorithm for matrix functions based on a procedure to implement the linear combination of the inverses on quantum computers. Compared with the previous study [S. Takahira, A. Ohashi, T. Sogabe, and T.S. Usuda, Quant. Inf. Comput., \textbf{20}, 1\&2, 14--36, (Feb. 2020)] that proposed a quantum algorithm to compute a quantum state for the matrix function based on the circular contour centered at the origin, the quantum algorithm in the present paper can be applied to a more general contour. Moreover, the algorithm is described by the block-encoding framework. Similarly to the previous study, the algorithm can be applied even if the input matrix is not a Hermitian or normal matrix. This is an advantage compared with quantum singular value transformation.