Probability limit property for energy function to feed-forward neural networks with noise

Cong Jin
{"title":"Probability limit property for energy function to feed-forward neural networks with noise","authors":"Cong Jin","doi":"10.1109/ICMLC.2002.1176695","DOIUrl":null,"url":null,"abstract":"A probability limit property is proposed for the weight vectors W of feed-forward neural networks when both the input data and output data contain noise or when only the output data contains noise. By theoretical analysis of the energy function of a feed-forward neural network, the paper points out that a least square energy function isn't a good choice. The result is good enough for future research.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"6 1","pages":"1-3 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A probability limit property is proposed for the weight vectors W of feed-forward neural networks when both the input data and output data contain noise or when only the output data contains noise. By theoretical analysis of the energy function of a feed-forward neural network, the paper points out that a least square energy function isn't a good choice. The result is good enough for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带噪声前馈神经网络能量函数的概率极限性质
提出了前馈神经网络在输入数据和输出数据都包含噪声或仅输出数据包含噪声时权向量W的概率极限性质。通过对前馈神经网络能量函数的理论分析,指出最小二乘能量函数不是一个好的选择。这一结果对未来的研究来说是足够好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary Talk: Digital-Twin Fluid Engineering APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM. The multistage support vector machine Anti-control of chaos based on fuzzy neural networks inverse system method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1