Célia Lima, J. Madureira, M. M. Carolino, J. Noronha, F. Margaça, Sandra Cabo Verde
{"title":"A Biodegradation Bench Study of Cork Wastewater using Gamma Radiation","authors":"Célia Lima, J. Madureira, M. M. Carolino, J. Noronha, F. Margaça, Sandra Cabo Verde","doi":"10.1515/jaots-2016-0109","DOIUrl":null,"url":null,"abstract":"Abstract Wastewater from cork processing industry present high levels of organic compounds such as phenolics that must be degraded before discharge into the municipal sewer or into public water courses. The aim of this work was to find out if gamma radiation treatment could increase the biodegradability of recalcitrant compounds using a microbial consortium and a mixed solution of four phenolic acids as a model. Chemical and microbiological analyses were performed in non-irradiated (0 kGy) and irradiated (100 kGy) mixed phenolic acids cultures during incubation time. A preliminary HPLC and GC-MS analysis were performed to detect the major phenolic compounds in cork wastewater samples. Results indicated the presence of gallic, protocatechuic, vanillic and syringic acids in cork boiling water and gallic, protocatechuic and vanillic acids in sediment tank samples. The Total Phenolic content (TP) of mixed phenolic acids cultures during incubation time indicated a decrease of 38% for 100 kGy samples. The HPLC analysis suggested that the radiolytic products of syringic and vanillic acids are protocatechuic and gallic acids. The CFU counts pointed out to a decreasing tendency along the incubation time for phenolic acids cultures (0 kGy and 100 kGy) suggesting a non-degradation trend. The selected microbial consortium was not able to metabolize the phenolic compounds solutions at the used conditions. This could be due to the detected radiolytic degradation dynamics of the phenolic acids considering the antimicrobial activity of these compounds.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"159 1","pages":"73 - 78"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Wastewater from cork processing industry present high levels of organic compounds such as phenolics that must be degraded before discharge into the municipal sewer or into public water courses. The aim of this work was to find out if gamma radiation treatment could increase the biodegradability of recalcitrant compounds using a microbial consortium and a mixed solution of four phenolic acids as a model. Chemical and microbiological analyses were performed in non-irradiated (0 kGy) and irradiated (100 kGy) mixed phenolic acids cultures during incubation time. A preliminary HPLC and GC-MS analysis were performed to detect the major phenolic compounds in cork wastewater samples. Results indicated the presence of gallic, protocatechuic, vanillic and syringic acids in cork boiling water and gallic, protocatechuic and vanillic acids in sediment tank samples. The Total Phenolic content (TP) of mixed phenolic acids cultures during incubation time indicated a decrease of 38% for 100 kGy samples. The HPLC analysis suggested that the radiolytic products of syringic and vanillic acids are protocatechuic and gallic acids. The CFU counts pointed out to a decreasing tendency along the incubation time for phenolic acids cultures (0 kGy and 100 kGy) suggesting a non-degradation trend. The selected microbial consortium was not able to metabolize the phenolic compounds solutions at the used conditions. This could be due to the detected radiolytic degradation dynamics of the phenolic acids considering the antimicrobial activity of these compounds.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs