{"title":"Solvothermal synthesis of Bi12TiO20/Bi4Ti3O12 heterostructure with highly efficient photodegradation of MO under UV irradiation","authors":"Saad Aarich, M. Saidi, N. Chouaibi, K. Ziat","doi":"10.3233/mgc-230060","DOIUrl":null,"url":null,"abstract":"The sillenite-structured bismuth titanate (Bi12TiO20) is thought to be a viable photocatalyst for environmental remediation. However, the performance of Bi12TiO20 as a photocatalyst is severely constrained by its limited range of light sensitivity and the rapid photoinduced electron-hole pair recombination. A practical and effective way to overcome these limitations is to combine Bi12TiO20 with adequate photocatalysts to create heterojunctions. Here, a one-step solvothermal technique is used to synthesize Bi12TiO20/Bi4Ti3O12 heterojunction (BTO). The electric field that exists between B12TiO20, Bi4Ti3O12 and the closed interfacial contacts had a synergistic effect on the constructed composites, which resulted in high charge transfer abilities. Therefore, the BTO heterojunction demonstrated increased photocatalytic efficacy in the presence of ultraviolet irradiation. The MO removal efficiency of optimal BTO was 97.15%, significantly higher than that of pure Bi2O3 (46.9%). Furthermore, the cycling experiment demonstrated that the BTO heterojunction is stable and reusable. The probable mechanism of photocatalytic MO oxidation over BTO heterojunction was studied by various scavengers. The •OH radicals and holes played essential roles in BTO system of photocatalytic oxidation process.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-230060","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The sillenite-structured bismuth titanate (Bi12TiO20) is thought to be a viable photocatalyst for environmental remediation. However, the performance of Bi12TiO20 as a photocatalyst is severely constrained by its limited range of light sensitivity and the rapid photoinduced electron-hole pair recombination. A practical and effective way to overcome these limitations is to combine Bi12TiO20 with adequate photocatalysts to create heterojunctions. Here, a one-step solvothermal technique is used to synthesize Bi12TiO20/Bi4Ti3O12 heterojunction (BTO). The electric field that exists between B12TiO20, Bi4Ti3O12 and the closed interfacial contacts had a synergistic effect on the constructed composites, which resulted in high charge transfer abilities. Therefore, the BTO heterojunction demonstrated increased photocatalytic efficacy in the presence of ultraviolet irradiation. The MO removal efficiency of optimal BTO was 97.15%, significantly higher than that of pure Bi2O3 (46.9%). Furthermore, the cycling experiment demonstrated that the BTO heterojunction is stable and reusable. The probable mechanism of photocatalytic MO oxidation over BTO heterojunction was studied by various scavengers. The •OH radicals and holes played essential roles in BTO system of photocatalytic oxidation process.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.