Combining Possibly Related Estimation Problems

B. Efron, C. Morris
{"title":"Combining Possibly Related Estimation Problems","authors":"B. Efron, C. Morris","doi":"10.1111/J.2517-6161.1973.TB00968.X","DOIUrl":null,"url":null,"abstract":"SUMMARY We have two sets of parameters we wish to estimate, and wonder whether the James-Stein estimator should be applied separately to the two sets or once to the combined problem. We show that there is a class of compromise estimators, Bayesian in nature, which will usually be preferred to either alternative. \"The difficulty here is to know what problems are to be combined togetherwhy should not all our estimation problems be lumped together into one grand melee ?\" GEORGE BARNARD commenting on the James-Stein estimator, 1962.","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"46 1","pages":"379-402"},"PeriodicalIF":0.0000,"publicationDate":"1973-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1973.TB00968.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

Abstract

SUMMARY We have two sets of parameters we wish to estimate, and wonder whether the James-Stein estimator should be applied separately to the two sets or once to the combined problem. We show that there is a class of compromise estimators, Bayesian in nature, which will usually be preferred to either alternative. "The difficulty here is to know what problems are to be combined togetherwhy should not all our estimation problems be lumped together into one grand melee ?" GEORGE BARNARD commenting on the James-Stein estimator, 1962.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合可能相关的估计问题
我们有两组参数需要估计,并且想知道是否应该将James-Stein估计器分别应用于这两组参数还是一次应用于组合问题。我们证明了存在一类折衷估计器,本质上是贝叶斯估计器,它通常优于任意一种选择。“这里的困难是知道什么问题要组合在一起——为什么我们所有的估计问题不应该集中在一起成为一个大混战?”GEORGE BARNARD评论James-Stein估计器,1962。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1