{"title":"Sistem Presensi Karyawan Berbasis Pengenalan Wajah Dengan Metode Support Vector Machine","authors":"David Setiyadi, Fauzun Atabiq, Siti Aisyah","doi":"10.30871/jaee.v5i2.3147","DOIUrl":null,"url":null,"abstract":"Sistem presensi saat ini yang ada pada instansi ataupun perusahaan masih banyak yang menggunakan sistem manual. Disisi lain, perusahaan-perusahaan tersebut juga telah memiliki aplikasi pengelolaan SDM online. Oleh karena itu, untuk efektifitas dan pengembangan sistem, perlu dilakukan pengembangan sistem presensi manual tersebut menjadi sebuah sistem yang dapat diintegrasikan dengan sistem pengelolaan SDM. Untuk itu, penelitian ini mengusulkan pengembangan sistem presensi berbasiskan pengenalan wajah yang diintegrasikan dengan aplikasi pengelolaan SDM. Sistem yang dibangun merupakan sistem deteksi dan pengenalan menggunakan Support Vector Machine yang di kombinasikan dengan metode Histogram of oriented gradient. Hasil pengujian sistem presensi menunjukkan hasil recall sebesar 77,78%, nilai spesifitas 32,22%, akurasi sistem 72,78%, dan kepresisian sistem mencapai 70,71%.","PeriodicalId":34399,"journal":{"name":"International Journal of Electrical Engineering and Applied Sciences","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30871/jaee.v5i2.3147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sistem presensi saat ini yang ada pada instansi ataupun perusahaan masih banyak yang menggunakan sistem manual. Disisi lain, perusahaan-perusahaan tersebut juga telah memiliki aplikasi pengelolaan SDM online. Oleh karena itu, untuk efektifitas dan pengembangan sistem, perlu dilakukan pengembangan sistem presensi manual tersebut menjadi sebuah sistem yang dapat diintegrasikan dengan sistem pengelolaan SDM. Untuk itu, penelitian ini mengusulkan pengembangan sistem presensi berbasiskan pengenalan wajah yang diintegrasikan dengan aplikasi pengelolaan SDM. Sistem yang dibangun merupakan sistem deteksi dan pengenalan menggunakan Support Vector Machine yang di kombinasikan dengan metode Histogram of oriented gradient. Hasil pengujian sistem presensi menunjukkan hasil recall sebesar 77,78%, nilai spesifitas 32,22%, akurasi sistem 72,78%, dan kepresisian sistem mencapai 70,71%.