{"title":"Articles of Significant Interest Selected from This Issue by the Editors","authors":"","doi":"10.1128/ec.00113-15","DOIUrl":null,"url":null,"abstract":"Shigella flexneri, the causative agent of bacillary dysentery, triggers its uptake into nonphagocytic epithelial cells, resulting in cytoskeletal rearrangements at the entry site. Upon entry, the invading bacterium escapes from the endocytic vacuole to replicate within the cytoplasm. Ehsani et al. (p. 2548 –2557) investigated the spatiotemporal dynamics of host factors at the bacterial entry site and during vacuolar escape. This work showed that (i) host factors are simultaneously recruited to the forming vacuole, (ii) host factors are sequentially dispersed from the rupturing vacuole, and (iii) the bacterial effector IpgB1 accelerates entry but not vacuolar progression or rupture.","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":"7 1","pages":"845 - 845"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eukaryotic Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ec.00113-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Shigella flexneri, the causative agent of bacillary dysentery, triggers its uptake into nonphagocytic epithelial cells, resulting in cytoskeletal rearrangements at the entry site. Upon entry, the invading bacterium escapes from the endocytic vacuole to replicate within the cytoplasm. Ehsani et al. (p. 2548 –2557) investigated the spatiotemporal dynamics of host factors at the bacterial entry site and during vacuolar escape. This work showed that (i) host factors are simultaneously recruited to the forming vacuole, (ii) host factors are sequentially dispersed from the rupturing vacuole, and (iii) the bacterial effector IpgB1 accelerates entry but not vacuolar progression or rupture.
期刊介绍:
Eukaryotic Cell (EC) focuses on eukaryotic microbiology and presents reports of basic research on simple eukaryotic microorganisms, such as yeasts, fungi, algae, protozoa, and social amoebae. The journal also covers viruses of these organisms and their organelles and their interactions with other living systems, where the focus is on the eukaryotic cell. Topics include: - Basic biology - Molecular and cellular biology - Mechanisms, and control, of developmental pathways - Structure and form inherent in basic biological processes - Cellular architecture - Metabolic physiology - Comparative genomics, biochemistry, and evolution - Population dynamics - Ecology