A Hybrid of Shrinking Ball Method and Optimal Large Deviation Rate Estimation in Continuous Contextual Simulation Optimization with Single Observation

Xiao Jin, Yichi Shen, L. Lee, E. P. Chew, C. Shoemaker
{"title":"A Hybrid of Shrinking Ball Method and Optimal Large Deviation Rate Estimation in Continuous Contextual Simulation Optimization with Single Observation","authors":"Xiao Jin, Yichi Shen, L. Lee, E. P. Chew, C. Shoemaker","doi":"10.1109/WSC48552.2020.9384019","DOIUrl":null,"url":null,"abstract":"We propose a new method for solving continuous contextual simulation optimization with a single observation. By adopting the estimation on the large deviation rate in the contextual ranking and selection problem, we transfer the old theorem to the continuous setting using a shrinking ball inspired construct. Through the estimation of the rate, the new method is expected to achieve the optimal performance in this new problem setting. Brief numerical experiments are conducted and show significant advantages of our method against the uniform sampling scheme.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"1 1","pages":"2996-3007"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new method for solving continuous contextual simulation optimization with a single observation. By adopting the estimation on the large deviation rate in the contextual ranking and selection problem, we transfer the old theorem to the continuous setting using a shrinking ball inspired construct. Through the estimation of the rate, the new method is expected to achieve the optimal performance in this new problem setting. Brief numerical experiments are conducted and show significant advantages of our method against the uniform sampling scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单观测连续上下文仿真优化中收缩球法与最优大偏差率估计的混合
我们提出了一种求解单次观测连续上下文模拟优化的新方法。通过在上下文排序和选择问题中采用对大偏差率的估计,利用收缩球启发构造将旧定理转移到连续设置中。通过对速率的估计,期望新方法在新问题集中达到最优性能。简要的数值实验表明,该方法相对于均匀采样方案具有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Précis: The Emotional Mind: The Affective Roots of Culture and Cognition Emotional Correctness Robot Collaboration Intelligence with AI Evaluation and Selection of Hospital Layout Based on an Integrated Simulation Method A Simheuristic Approach for Robust Scheduling of Airport Turnaround Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1