{"title":"Purify: A new algorithmic framework for next-generation radio-interferometric imaging","authors":"R. Carrillo, J. McEwen, Y. Wiaux","doi":"10.1109/ICASSP.2014.6854636","DOIUrl":null,"url":null,"abstract":"In recent works, compressed sensing and convex optimization techniques have been applied to radio-interferometric imaging showing the potential to outperform state-of-the-art imaging algorithms in the field. We review our latest contributions, which leverage the versatility of convex optimization to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure, promoted in a new software PURIFY (beta version), relies on the simultaneous-direction method of multipliers (SDMM). The performance of various sparsity priors is evaluated through simulations in the continuous visibility setting, confirming the superiority of our recent average sparsity approach SARA.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"64 1","pages":"5407-5411"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In recent works, compressed sensing and convex optimization techniques have been applied to radio-interferometric imaging showing the potential to outperform state-of-the-art imaging algorithms in the field. We review our latest contributions, which leverage the versatility of convex optimization to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure, promoted in a new software PURIFY (beta version), relies on the simultaneous-direction method of multipliers (SDMM). The performance of various sparsity priors is evaluated through simulations in the continuous visibility setting, confirming the superiority of our recent average sparsity approach SARA.