The Multivariable Non-Minimal State Space- Proportional Integral Plus (NMSS-PIP) Control for Carbon Dioxide Absorption System

Fereshte Tavakoli Dastjerd, J. Sadeghi
{"title":"The Multivariable Non-Minimal State Space- Proportional Integral Plus (NMSS-PIP) Control for Carbon Dioxide Absorption System","authors":"Fereshte Tavakoli Dastjerd, J. Sadeghi","doi":"10.22059/JCHPE.2020.287075.1293","DOIUrl":null,"url":null,"abstract":"The present article investigates the implementation of non-minimal state space (NMSS) representation with proportional-integral-plus (PIP) controller for the carbon dioxide absorption process of Shiraz petrochemical ammonia unit. The PIP controller is a logical extension of conventional PI/PID controllers with additional dynamic feedback and input compensators. PIP controller is used for multivariable control without limitation on the number of controlled variables. A Multi Input - Multi Output (MIMO) square model was extracted from step response test. In this way, input water flow rate to carbon dioxide absorption system, the heat duty of input absorbent cooler to tray (1) of absorption tower and re-boiler heat duty of stripping tower are chosen as manipulated variables (inputs), while carbon dioxide mole fraction in absorption tower vapor product, the water mole fraction in absorption tower liquid product and tray temperature No. 36 of stripping tower are determined as controlled ones (outputs). The system identification is performed with three input and three output variables using step response test. As a result, continuous and discrete time transfer function matrices and suitable NMSS model for PIP controller are reported. Finally, in order to evaluate the PIP control performance, the feed flow rate increases by 2%. The results show the proper performance of designed PIP controller for both disturbance rejection and set point tracking.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2020.287075.1293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The present article investigates the implementation of non-minimal state space (NMSS) representation with proportional-integral-plus (PIP) controller for the carbon dioxide absorption process of Shiraz petrochemical ammonia unit. The PIP controller is a logical extension of conventional PI/PID controllers with additional dynamic feedback and input compensators. PIP controller is used for multivariable control without limitation on the number of controlled variables. A Multi Input - Multi Output (MIMO) square model was extracted from step response test. In this way, input water flow rate to carbon dioxide absorption system, the heat duty of input absorbent cooler to tray (1) of absorption tower and re-boiler heat duty of stripping tower are chosen as manipulated variables (inputs), while carbon dioxide mole fraction in absorption tower vapor product, the water mole fraction in absorption tower liquid product and tray temperature No. 36 of stripping tower are determined as controlled ones (outputs). The system identification is performed with three input and three output variables using step response test. As a result, continuous and discrete time transfer function matrices and suitable NMSS model for PIP controller are reported. Finally, in order to evaluate the PIP control performance, the feed flow rate increases by 2%. The results show the proper performance of designed PIP controller for both disturbance rejection and set point tracking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳吸收系统的多变量非最小状态空间-比例积分加(NMSS-PIP)控制
本文研究了非最小状态空间(NMSS)表示与比例积分加(PIP)控制器在设拉子石化氨装置二氧化碳吸收过程中的实现。PIP控制器是传统PI/PID控制器的逻辑扩展,具有额外的动态反馈和输入补偿器。PIP控制器用于多变量控制,不受控制变量数量的限制。从阶跃响应试验中提取了一个多输入-多输出(MIMO)平方模型。这样,将二氧化碳吸收系统的输入水流量、吸收塔输入吸收冷却器对塔板(1)的热负荷和汽提塔的再锅炉热负荷作为操纵变量(输入),将吸收塔蒸汽产物中的二氧化碳摩尔分数、吸收塔液体产物中的水摩尔分数和汽提塔36号塔板温度作为控制变量(输出)。采用阶跃响应测试方法,对三个输入和三个输出变量进行系统辨识。在此基础上,提出了连续和离散时间传递函数矩阵以及适用于PIP控制器的NMSS模型。最后,为了评价PIP控制性能,进料流量增加2%。结果表明,所设计的PIP控制器具有良好的抗干扰性能和设定值跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
The Influence of Bimodal Heterogeneity on Viscous Fingering of a Miscible Interface in Porous Media Optimizing SO2 Adsorption from Flue Gas Using Microporous Polypropylene Hollow Fiber Membrane Contactor Investigation of Operating Parameters on Ultrasound-Assisted Extraction of Anethole in Fennel Essential Oil Experimental Study of Low Speed Impact Test on the Fiber-Metal Composite Toughened with NBR Elastomer Multi-Objective Optimization of Different Channel Shapes in Heat Exchangers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1