COMPUTATIONAL INVESTIGATION OF NANOSCALE SEMICONDUCTOR DEVICES AND OPTOELECTRONIC DEVICES FROM THE ELECTROMAGNETICS AND QUANTUM PERSPECTIVES BY THE FINITE DIFFERENCE TIME DOMAIN METHOD (INVITED REVIEW)
Huali Duan, W. Fang, W. Yin, Erping Li, and Wenchao Chen
{"title":"COMPUTATIONAL INVESTIGATION OF NANOSCALE SEMICONDUCTOR DEVICES AND OPTOELECTRONIC DEVICES FROM THE ELECTROMAGNETICS AND QUANTUM PERSPECTIVES BY THE FINITE DIFFERENCE TIME DOMAIN METHOD (INVITED REVIEW)","authors":"Huali Duan, W. Fang, W. Yin, Erping Li, and Wenchao Chen","doi":"10.2528/PIER20122201","DOIUrl":null,"url":null,"abstract":"In the simulation of high frequency nanoscale semiconductor devices in which electromagnetic (EM) fields and carrier transport are coupled, and optoelectronic devices in which strong interactions between EM fields and charged particles exist, both the Maxwell’s equations and the time-dependent Schrödinger equation (TDSE) need to be solved to capture the interactions between EM and quantum mechanics (QM). One of the numerical simulation methods for solving these equations is the finite difference time domain (FDTD) method. In this review paper, the development of FDTD method applied in EM and QM simulation is discussed. Several widely used FDTD techniques, i.e., explicit, implicit, explicit staggered-time, and Chebyshev methods, for solving the TDSE are introduced and compared. The hybrid approaches based on FDTD method, which are used to solve the PoissonTDSE and Maxwell-TDSE coupled equations for EM-QM simulation, are also discussed. Furthermore, the applications of these simulation methods for nanoscale semiconductor devices and optoelectronic devices are introduced. Finally, a conclusion is given.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"65 1","pages":"63-78"},"PeriodicalIF":6.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER20122201","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 5
Abstract
In the simulation of high frequency nanoscale semiconductor devices in which electromagnetic (EM) fields and carrier transport are coupled, and optoelectronic devices in which strong interactions between EM fields and charged particles exist, both the Maxwell’s equations and the time-dependent Schrödinger equation (TDSE) need to be solved to capture the interactions between EM and quantum mechanics (QM). One of the numerical simulation methods for solving these equations is the finite difference time domain (FDTD) method. In this review paper, the development of FDTD method applied in EM and QM simulation is discussed. Several widely used FDTD techniques, i.e., explicit, implicit, explicit staggered-time, and Chebyshev methods, for solving the TDSE are introduced and compared. The hybrid approaches based on FDTD method, which are used to solve the PoissonTDSE and Maxwell-TDSE coupled equations for EM-QM simulation, are also discussed. Furthermore, the applications of these simulation methods for nanoscale semiconductor devices and optoelectronic devices are introduced. Finally, a conclusion is given.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.