Building the World's Largest Radio Telescope: The Square Kilometre Array Science Data Processor

J. Farnes, B. Mort, F. Dulwich, K. Adámek, Anna Brown, Jan Novotný, S. Salvini, W. Armour
{"title":"Building the World's Largest Radio Telescope: The Square Kilometre Array Science Data Processor","authors":"J. Farnes, B. Mort, F. Dulwich, K. Adámek, Anna Brown, Jan Novotný, S. Salvini, W. Armour","doi":"10.1109/eScience.2018.00101","DOIUrl":null,"url":null,"abstract":"The Square Kilometre Array (SKA) will be the largest radio telescope constructed to date and the largest Big Data project in the known Universe. The first phase of the project will generate 160 terabytes every second. This amounts to 5 zettabytes (5 million petabytes) of data that will be generated by the facility each year - a data rate equivalent to 5 times the estimated global internet traffic in 2015. These data need to be reduced and then continuously ingested by the SKA Science Data Processor (SDP). Within the SDP Consortium, we are contributing to various roles in the development of the telescope including building a lightweight end-to-end prototype of the major components of the SDP system - a project we call the SDP Integration Prototype (SIP). The aim is to build a mini, fully-operational SDP, for which we have been developing realistic SKA-like science pipelines that can handle these unprecedented data volumes.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"75 1","pages":"366-367"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Square Kilometre Array (SKA) will be the largest radio telescope constructed to date and the largest Big Data project in the known Universe. The first phase of the project will generate 160 terabytes every second. This amounts to 5 zettabytes (5 million petabytes) of data that will be generated by the facility each year - a data rate equivalent to 5 times the estimated global internet traffic in 2015. These data need to be reduced and then continuously ingested by the SKA Science Data Processor (SDP). Within the SDP Consortium, we are contributing to various roles in the development of the telescope including building a lightweight end-to-end prototype of the major components of the SDP system - a project we call the SDP Integration Prototype (SIP). The aim is to build a mini, fully-operational SDP, for which we have been developing realistic SKA-like science pipelines that can handle these unprecedented data volumes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建造世界上最大的射电望远镜:平方公里阵列科学数据处理器
平方公里阵列(SKA)将是迄今为止建造的最大的射电望远镜,也是已知宇宙中最大的大数据项目。该项目的第一阶段将每秒产生160tb的数据。这相当于该设施每年将产生5zb(500万拍字节)的数据,数据速率相当于2015年全球互联网流量的5倍。这些数据需要被简化,然后被SKA科学数据处理器(SDP)不断地吸收。在SDP联盟中,我们在望远镜的开发中扮演着不同的角色,包括构建SDP系统主要组件的轻量级端到端原型-我们称之为SDP集成原型(SIP)的项目。我们的目标是建立一个小型的、全功能的SDP,为此我们一直在开发类似ska的科学管道,可以处理这些前所未有的数据量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Occam: Software Environment for Creating Reproducible Research Smart Data Scouting in Professional Soccer: Evaluating Passing Performance Based on Position Tracking Data Improving LBFGS Optimizer in PyTorch: Knowledge Transfer from Radio Interferometric Calibration to Machine Learning Nordic Exome Variant Catalogue a Web Resource for Genomic Data Browsing Survey on Research Software Engineering in the Netherlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1