Attention-Aware Multi-View Stereo

Keyang Luo, T. Guan, L. Ju, Yuesong Wang, Zhu Chen, Yawei Luo
{"title":"Attention-Aware Multi-View Stereo","authors":"Keyang Luo, T. Guan, L. Ju, Yuesong Wang, Zhu Chen, Yawei Luo","doi":"10.1109/cvpr42600.2020.00166","DOIUrl":null,"url":null,"abstract":"Multi-view stereo is a crucial task in computer vision, that requires accurate and robust photo-consistency among input images for depth estimation. Recent studies have shown that learning-based feature matching and confidence regularization can play a vital role in this task. Nevertheless, how to design good matching confidence volumes as well as effective regularizers for them are still under in-depth study. In this paper, we propose an attention-aware deep neural network “AttMVS” for learning multi-view stereo. In particular, we propose a novel attention-enhanced matching confidence volume, that combines the raw pixel-wise matching confidence from the extracted perceptual features with the contextual information of local scenes, to improve the matching robustness. Furthermore, we develop an attention-guided regularization module, which consists of multilevel ray fusion modules, to hierarchically aggregate and regularize the matching confidence volume into a latent depth probability volume.Experimental results show that our approach achieves the best overall performance on the DTU dataset and the intermediate sequences of Tanks & Temples benchmark over many state-of-the-art MVS algorithms.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"95 1","pages":"1587-1596"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

Multi-view stereo is a crucial task in computer vision, that requires accurate and robust photo-consistency among input images for depth estimation. Recent studies have shown that learning-based feature matching and confidence regularization can play a vital role in this task. Nevertheless, how to design good matching confidence volumes as well as effective regularizers for them are still under in-depth study. In this paper, we propose an attention-aware deep neural network “AttMVS” for learning multi-view stereo. In particular, we propose a novel attention-enhanced matching confidence volume, that combines the raw pixel-wise matching confidence from the extracted perceptual features with the contextual information of local scenes, to improve the matching robustness. Furthermore, we develop an attention-guided regularization module, which consists of multilevel ray fusion modules, to hierarchically aggregate and regularize the matching confidence volume into a latent depth probability volume.Experimental results show that our approach achieves the best overall performance on the DTU dataset and the intermediate sequences of Tanks & Temples benchmark over many state-of-the-art MVS algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
注意感知多视角立体
多视点立体视觉是计算机视觉中的一项重要任务,它要求输入图像之间具有准确和鲁棒的图像一致性,以进行深度估计。最近的研究表明,基于学习的特征匹配和置信度正则化可以在这一任务中发挥重要作用。然而,如何为它们设计良好的匹配置信度以及有效的正则化器仍在深入研究中。在本文中,我们提出了一种用于学习多视点立体视觉的注意力感知深度神经网络“AttMVS”。特别是,我们提出了一种新的注意力增强匹配置信度,将提取的感知特征的原始像素级匹配置信度与局部场景的上下文信息相结合,以提高匹配的鲁棒性。此外,我们开发了一个由多层射线融合模块组成的注意引导正则化模块,将匹配置信度体分层聚集并正则化为潜在深度概率体。实验结果表明,与许多最先进的MVS算法相比,我们的方法在DTU数据集和Tanks & Temples基准的中间序列上实现了最佳的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1