Ranking Using Transition Probabilities Learned from Multi-Attribute Data

Sigurd Løkse, R. Jenssen
{"title":"Ranking Using Transition Probabilities Learned from Multi-Attribute Data","authors":"Sigurd Løkse, R. Jenssen","doi":"10.1109/ICASSP.2018.8462132","DOIUrl":null,"url":null,"abstract":"In this paper, as a novel approach, we learn Markov chain transition probabilities for ranking of multi -attribute data from the inherent structures in the data itself. The procedure is inspired by consensus clustering and exploits a suitable form of the PageRank algorithm. This is very much in the spirit of the original PageRank utilizing the hyperlink structure to learn such probabilities. As opposed to existing approaches for ranking multi -attribute data, our method is not dependent on tuning of critical user-specified parameters. Experiments show the benefits of the proposed method.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"2851-2855"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, as a novel approach, we learn Markov chain transition probabilities for ranking of multi -attribute data from the inherent structures in the data itself. The procedure is inspired by consensus clustering and exploits a suitable form of the PageRank algorithm. This is very much in the spirit of the original PageRank utilizing the hyperlink structure to learn such probabilities. As opposed to existing approaches for ranking multi -attribute data, our method is not dependent on tuning of critical user-specified parameters. Experiments show the benefits of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于转移概率的多属性数据排序
本文采用一种新颖的方法,从数据本身的固有结构中学习多属性数据排序的马尔可夫链转移概率。该方法受到共识聚类的启发,并利用了PageRank算法的一种合适形式。这非常符合原始PageRank利用超链接结构来学习这种概率的精神。与现有的多属性数据排序方法相反,我们的方法不依赖于用户指定的关键参数的调优。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1