{"title":"NISAR L-Band feed antenna tiles, preliminary design","authors":"P. Focardi, P. Brown","doi":"10.1109/APS.2016.7696396","DOIUrl":null,"url":null,"abstract":"Being developed in partnership between NASA and the Indian Space Research Organisation (ISRO), the NASA-ISRO Synthetic Aperture Radar (NISAR) satellite is planned to launch in late 2020. NISAR will measure many aspects of how Earth is changing with unprecedented accuracy on a global scale from a Low Earth Orbit (LEO) platform. With a 12m deployable mesh reflector, NISAR will feature one of the largest deployable mesh reflector ever launched for a scientific mission. Two large planar phased arrays will feed the reflector, one that will operate at L-Band and be developed by the Jet Propulsion Laboratory (JPL), and an S-band array that will be developed at the ISRO Space Application Centre (SAC). This paper describes the preliminary design of the L-Band feed array.","PeriodicalId":6496,"journal":{"name":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","volume":"7 1","pages":"1379-1380"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2016.7696396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Being developed in partnership between NASA and the Indian Space Research Organisation (ISRO), the NASA-ISRO Synthetic Aperture Radar (NISAR) satellite is planned to launch in late 2020. NISAR will measure many aspects of how Earth is changing with unprecedented accuracy on a global scale from a Low Earth Orbit (LEO) platform. With a 12m deployable mesh reflector, NISAR will feature one of the largest deployable mesh reflector ever launched for a scientific mission. Two large planar phased arrays will feed the reflector, one that will operate at L-Band and be developed by the Jet Propulsion Laboratory (JPL), and an S-band array that will be developed at the ISRO Space Application Centre (SAC). This paper describes the preliminary design of the L-Band feed array.