Photogrammetric Techniques and UAV for Drainage Pattern and Overflow Assessment in Mountainous Terrains - Hatta/UAE

S. Al-Mansoori, R. Al-Ruzouq, Diena Al Dogom, Meera Al Shamsi, Alya Al Mazzm, N. Aburaed
{"title":"Photogrammetric Techniques and UAV for Drainage Pattern and Overflow Assessment in Mountainous Terrains - Hatta/UAE","authors":"S. Al-Mansoori, R. Al-Ruzouq, Diena Al Dogom, Meera Al Shamsi, Alya Al Mazzm, N. Aburaed","doi":"10.1109/IGARSS.2019.8898151","DOIUrl":null,"url":null,"abstract":"Accurate and precise spatial hydrologic information is essential for effective management of natural resources, planning, and disaster response. Very high-resolution images and precise digital elevation models (DEMs) are crucial to accurately predict overflow in urban and mountainous regions; however, available course resolution DEMs with insufficient details cannot provide reliable overflow models. In this context, unmanned aerial vehicles (UAVs) offer a competitive alternative over satellites or airplanes and provide high spatial details essential for significant improvement of hydrological modeling. In this study, photogrammetric processing that includes stereo images captured via a fixed-wing drone were processed to generate a high-resolution DEM for the area surrounding the Hatta Dam in the United Arab Emirates. Three levels of details were introduced: data collection, photogrammetric processing, and hydrologic modeling. This study determined that flow modeling based on the UAV DEMs resulted in accurate hydrological modeling.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"82 1","pages":"951-954"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accurate and precise spatial hydrologic information is essential for effective management of natural resources, planning, and disaster response. Very high-resolution images and precise digital elevation models (DEMs) are crucial to accurately predict overflow in urban and mountainous regions; however, available course resolution DEMs with insufficient details cannot provide reliable overflow models. In this context, unmanned aerial vehicles (UAVs) offer a competitive alternative over satellites or airplanes and provide high spatial details essential for significant improvement of hydrological modeling. In this study, photogrammetric processing that includes stereo images captured via a fixed-wing drone were processed to generate a high-resolution DEM for the area surrounding the Hatta Dam in the United Arab Emirates. Three levels of details were introduced: data collection, photogrammetric processing, and hydrologic modeling. This study determined that flow modeling based on the UAV DEMs resulted in accurate hydrological modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
山地地形排水格局和溢流评估的摄影测量技术和无人机- Hatta/UAE
准确、精确的空间水文信息对有效管理自然资源、规划和灾害应对至关重要。非常高分辨率的图像和精确的数字高程模型(dem)是准确预测城市和山区溢流的关键;然而,现有的航向分辨率dem在细节不足的情况下无法提供可靠的溢出模型。在这种情况下,无人驾驶飞行器(uav)提供了比卫星或飞机更有竞争力的替代方案,并为显著改进水文建模提供了必要的高空间细节。在这项研究中,摄影测量处理包括通过固定翼无人机捕获的立体图像,以生成阿拉伯联合酋长国哈达大坝周围地区的高分辨率DEM。详细介绍了三个层次的细节:数据收集、摄影测量处理和水文建模。本研究确定了基于无人机dem的流量建模可以实现准确的水文建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1