Application of solid-phase microextraction/gas chromatography method for extraction, identification, and comparison of polycyclic aromatic hydrocarbons from industrial and traditional edible oils
{"title":"Application of solid-phase microextraction/gas chromatography method for extraction, identification, and comparison of polycyclic aromatic hydrocarbons from industrial and traditional edible oils","authors":"Isa Fathollahy, Babak Baglari, S. Pirsa","doi":"10.3233/mgc-220139","DOIUrl":null,"url":null,"abstract":"Polycyclic aromatic hydrocarbons (PAHs) are a large group of cyclic aromatic hydrocarbons that have been listed as hazardous substances by the US Environmental Protection Agency and the World Health Organization. Edible oils are one of the important food sources of PAHs, which are created during the processes of drying oil seeds or refining edible oils. The aim of this research was to evaluate PAHs (Naphthalene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo[a]pyrene, and Benz[a]anthracene) in industrially produced edible oils (sunflower, corn, canola, olive and sesame) and traditional oils (press) (yellow animal oil, olive, sesame and sunflower oil) in Iran, and these samples were randomly prepared, sampled and analyzed from the stores of West Azarbaijan province (Urmia, Iran). PAHs were extracted from oily samples by solid phase microextraction method and analyzed by Gas Chromatography-FID. The highest concentration of PAHs (μg/L) were related to different oils as the follow: naphthalene (4.61 in animal yellow oil), Fluorene (0.75 in canola), Phenanthrene (0.21 in canola), Anthracene (0.01 in animal yellow oil), Fluoranthene (2.53 in canola), pyrene (2.67 in canola), Benz[a]anthracene (0.44 in corn) and Benzo[a]pyrene (0.45 in canola). The concentration of Benzo[a]pyrene was compared with the European Union (EU) limit value (μ>2) using one-sample t-test. In industrial canola oil, with an average concentration of 2.593μg/kg, Benzo[a]pyrene was higher than the European Union standard of 2μg/kg. Some of the studied aromatic hydrocarbons could not be detected in some oils.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-220139","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of cyclic aromatic hydrocarbons that have been listed as hazardous substances by the US Environmental Protection Agency and the World Health Organization. Edible oils are one of the important food sources of PAHs, which are created during the processes of drying oil seeds or refining edible oils. The aim of this research was to evaluate PAHs (Naphthalene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo[a]pyrene, and Benz[a]anthracene) in industrially produced edible oils (sunflower, corn, canola, olive and sesame) and traditional oils (press) (yellow animal oil, olive, sesame and sunflower oil) in Iran, and these samples were randomly prepared, sampled and analyzed from the stores of West Azarbaijan province (Urmia, Iran). PAHs were extracted from oily samples by solid phase microextraction method and analyzed by Gas Chromatography-FID. The highest concentration of PAHs (μg/L) were related to different oils as the follow: naphthalene (4.61 in animal yellow oil), Fluorene (0.75 in canola), Phenanthrene (0.21 in canola), Anthracene (0.01 in animal yellow oil), Fluoranthene (2.53 in canola), pyrene (2.67 in canola), Benz[a]anthracene (0.44 in corn) and Benzo[a]pyrene (0.45 in canola). The concentration of Benzo[a]pyrene was compared with the European Union (EU) limit value (μ>2) using one-sample t-test. In industrial canola oil, with an average concentration of 2.593μg/kg, Benzo[a]pyrene was higher than the European Union standard of 2μg/kg. Some of the studied aromatic hydrocarbons could not be detected in some oils.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.