How and why are calcium currents curtailed in the skeletal muscle voltage‐gated calcium channels?

B. Flucher, Petronel Tuluc
{"title":"How and why are calcium currents curtailed in the skeletal muscle voltage‐gated calcium channels?","authors":"B. Flucher, Petronel Tuluc","doi":"10.1113/JP273423","DOIUrl":null,"url":null,"abstract":"Voltage‐gated calcium channels represent the sole mechanism converting electrical signals of excitable cells into cellular functions such as contraction, secretion and gene regulation. Specific voltage‐sensing domains detect changes in membrane potential and control channel gating. Calcium ions entering through the channel function as second messengers regulating cell functions, with the exception of skeletal muscle, where CaV1.1 essentially does not function as a channel but activates calcium release from intracellular stores. It has long been known that calcium currents are dispensable for skeletal muscle contraction. However, the questions as to how and why the channel function of CaV1.1 is curtailed remained obscure until the recent discovery of a developmental CaV1.1 splice variant with normal channel functions. This discovery provided new means to study the molecular mechanisms regulating the channel gating and led to the understanding that in skeletal muscle, calcium currents need to be restricted to allow proper regulation of fibre type specification and to prevent mitochondrial damage.","PeriodicalId":22512,"journal":{"name":"The Japanese journal of physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Japanese journal of physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1113/JP273423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Voltage‐gated calcium channels represent the sole mechanism converting electrical signals of excitable cells into cellular functions such as contraction, secretion and gene regulation. Specific voltage‐sensing domains detect changes in membrane potential and control channel gating. Calcium ions entering through the channel function as second messengers regulating cell functions, with the exception of skeletal muscle, where CaV1.1 essentially does not function as a channel but activates calcium release from intracellular stores. It has long been known that calcium currents are dispensable for skeletal muscle contraction. However, the questions as to how and why the channel function of CaV1.1 is curtailed remained obscure until the recent discovery of a developmental CaV1.1 splice variant with normal channel functions. This discovery provided new means to study the molecular mechanisms regulating the channel gating and led to the understanding that in skeletal muscle, calcium currents need to be restricted to allow proper regulation of fibre type specification and to prevent mitochondrial damage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙电流如何以及为什么在骨骼肌电压门控钙通道中减少?
电压门控钙通道是将可兴奋细胞的电信号转化为细胞功能(如收缩、分泌和基因调控)的唯一机制。特定的电压感应域检测膜电位的变化并控制通道门控。通过通道进入的钙离子作为第二信使调节细胞功能,但骨骼肌除外,在骨骼肌中,CaV1.1基本上不作为通道,而是激活细胞内储存的钙释放。人们早就知道钙电流对于骨骼肌收缩是必不可少的。然而,CaV1.1的通道功能是如何以及为什么被削弱的问题仍然不清楚,直到最近发现了具有正常通道功能的CaV1.1剪接变体。这一发现为研究调节通道门控的分子机制提供了新的手段,并使人们认识到,在骨骼肌中,钙电流需要受到限制,以允许纤维类型规范的适当调节,并防止线粒体损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The substantia nigra modulates proximal colon tone and motility in a vagally-dependent manner in the rat. Mechanisms of Hebbian‐like plasticity in the ventral premotor – primary motor network Maternal obesity: influencing the heart right from the start Motor unit dysregulation following 15 days of unilateral lower limb immobilisation Back to the beginning: can we stop brain injury before it starts?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1