Multivariate Normal Variance Mixtures in R: The R Package nvmix

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Software Pub Date : 2022-01-01 DOI:10.18637/jss.v102.i02
Erik Hintz, M. Hofert, C. Lemieux
{"title":"Multivariate Normal Variance Mixtures in R: The R Package nvmix","authors":"Erik Hintz, M. Hofert, C. Lemieux","doi":"10.18637/jss.v102.i02","DOIUrl":null,"url":null,"abstract":"We present the features and implementation of the R package nvmix for the class of normal variance mixtures including Student t and normal distributions. The package provides functionalities for such distributions, notably the evaluation of the distribution and density function as well as likelihood-based parameter estimation. The distributional family is specified through the quantile function of the underlying mixing random variable. The R package nvmix thus allows one to model multivariate distributions well beyond the classical multivariate normal and t case. Additional functionalities include graphical goodness-of-fit assessment, the estimation of the risk measures value-at-risk and expected shortfall for univariate normal variance mixture distributions and functions to work with normal variance mixture copulas, such as sampling and the evaluation of normal variance mixture copulas and their densities. Furthermore, the package nvmix also provides functionalities for the evaluation of the distribution and density function as well as random variate generation for the more general class of grouped normal variance mixtures.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"2 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v102.i02","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

We present the features and implementation of the R package nvmix for the class of normal variance mixtures including Student t and normal distributions. The package provides functionalities for such distributions, notably the evaluation of the distribution and density function as well as likelihood-based parameter estimation. The distributional family is specified through the quantile function of the underlying mixing random variable. The R package nvmix thus allows one to model multivariate distributions well beyond the classical multivariate normal and t case. Additional functionalities include graphical goodness-of-fit assessment, the estimation of the risk measures value-at-risk and expected shortfall for univariate normal variance mixture distributions and functions to work with normal variance mixture copulas, such as sampling and the evaluation of normal variance mixture copulas and their densities. Furthermore, the package nvmix also provides functionalities for the evaluation of the distribution and density function as well as random variate generation for the more general class of grouped normal variance mixtures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R中的多元正态方差混合:R包混合
我们介绍了R包nvmix的特征和实现,用于包括Student t和正态分布在内的正态方差混合类。该软件包为这种分布提供了功能,特别是分布和密度函数的评估以及基于似然的参数估计。分布族是通过底层混合随机变量的分位数函数指定的。因此,R包nvmix允许对多变量分布进行建模,远远超出了经典的多变量正态分布和t情况。附加功能包括图形拟合优度评估,单变量正态方差混合分布的风险度量值和预期不足的估计,以及与正态方差混合copuls一起工作的函数,例如采样和正态方差混合copuls及其密度的评估。此外,nvmix包还提供了用于评估分布和密度函数的功能,以及用于更一般类别的分组正态方差混合物的随机变量生成功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
期刊最新文献
spsurvey: Spatial Sampling Design and Analysis in R. Application of Equal Local Levels to Improve Q-Q Plot Testing Bands with R Package qqconf. Elastic Net Regularization Paths for All Generalized Linear Models. Broken Stick Model for Irregular Longitudinal Data jumpdiff: A Python Library for Statistical Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1