A Self-braking Symbiotic Organisms Search Algorithm for Bi-objective Reentrant Hybrid Flow Shop Scheduling Problem

Zhengcai Cao, Sikai Gong, Meng Zhou, Kaiwen Liu
{"title":"A Self-braking Symbiotic Organisms Search Algorithm for Bi-objective Reentrant Hybrid Flow Shop Scheduling Problem","authors":"Zhengcai Cao, Sikai Gong, Meng Zhou, Kaiwen Liu","doi":"10.1109/COASE.2018.8560578","DOIUrl":null,"url":null,"abstract":"The bi-objective reentrant hybrid flow shop problem (BRHFSP) is a typical NP-hard scheduling case in a semiconductor wafer fabrication. In this paper, a self-braking Symbiotic Organisms Search algorithm (SSOS) is proposed to minimize the total tardiness and makespan of this problem. A discrete multi-objective Symbiotic Organisms Search is selected to reduce the wasted time of adjusting excessive parameters in most evolutionary algorithms. This algorithm has a brief structure with no control parameters. Moreover, the entropy-based termination criterion is added to multi-objective Symbiotic Organisms Search to decrease the computation burden. In this way, an entropy-based dissimilarity measure criterion is generated to help our algorithm stop automatically with the increase of iterations. Numerical test results in many cases demonstrate that SSOS is effective for BRHFSP.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"7 1","pages":"803-808"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The bi-objective reentrant hybrid flow shop problem (BRHFSP) is a typical NP-hard scheduling case in a semiconductor wafer fabrication. In this paper, a self-braking Symbiotic Organisms Search algorithm (SSOS) is proposed to minimize the total tardiness and makespan of this problem. A discrete multi-objective Symbiotic Organisms Search is selected to reduce the wasted time of adjusting excessive parameters in most evolutionary algorithms. This algorithm has a brief structure with no control parameters. Moreover, the entropy-based termination criterion is added to multi-objective Symbiotic Organisms Search to decrease the computation burden. In this way, an entropy-based dissimilarity measure criterion is generated to help our algorithm stop automatically with the increase of iterations. Numerical test results in many cases demonstrate that SSOS is effective for BRHFSP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双目标可重入混合流水车间调度问题的自制动共生生物搜索算法
双目标可重入混合流水车间问题(BRHFSP)是半导体晶圆制造中典型的NP-hard调度问题。本文提出了一种自制动共生生物搜索算法(SSOS),以最小化该问题的总延误和完工时间。为了减少进化算法中过多的参数调整所造成的时间浪费,选择了离散多目标共生生物搜索。该算法结构简单,无控制参数。此外,在多目标共生生物搜索中加入了基于熵的终止准则,减少了计算量。通过这种方式,生成一个基于熵的不相似度度量准则,帮助算法随着迭代次数的增加而自动停止。许多实例的数值试验结果表明,SSOS对BRHFSP是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1