S. Niekum, Sarah Osentoski, G. Konidaris, A. Barto
{"title":"Learning and generalization of complex tasks from unstructured demonstrations","authors":"S. Niekum, Sarah Osentoski, G. Konidaris, A. Barto","doi":"10.1109/IROS.2012.6386006","DOIUrl":null,"url":null,"abstract":"We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"79 1","pages":"5239-5246"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6386006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183
Abstract
We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.