Learning and generalization of complex tasks from unstructured demonstrations

S. Niekum, Sarah Osentoski, G. Konidaris, A. Barto
{"title":"Learning and generalization of complex tasks from unstructured demonstrations","authors":"S. Niekum, Sarah Osentoski, G. Konidaris, A. Barto","doi":"10.1109/IROS.2012.6386006","DOIUrl":null,"url":null,"abstract":"We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"79 1","pages":"5239-5246"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6386006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

Abstract

We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从非结构化演示中学习和概括复杂任务
我们提出了一种新的方法来分割演示,识别重复的技能,并从非结构化演示中概括复杂的任务。该方法结合了最近用于从演示中学习的自动分割方法的许多优点,将其集成到一个有原则的框架中。具体来说,我们使用Beta过程自回归隐马尔可夫模型和动态运动原语来学习和推广PR2移动机械臂上的多步骤任务,并展示了我们的框架随着时间的推移学习大量技能库的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
YES - YEt another object segmentation: Exploiting camera movement Scan registration with multi-scale k-means normal distributions transform Visual servoing using the sum of conditional variance Parallel sampling-based motion planning with superlinear speedup Tactile sensor based varying contact point manipulation strategy for dexterous robot hand manipulating unknown objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1