Implicit association via crowd-sourced coselection

H. Ashman, M. Antunovic, Satit Chaprasit, Gavin Smith, M. Truran
{"title":"Implicit association via crowd-sourced coselection","authors":"H. Ashman, M. Antunovic, Satit Chaprasit, Gavin Smith, M. Truran","doi":"10.1145/1995966.1995972","DOIUrl":null,"url":null,"abstract":"The interaction of vast numbers of search engine users with sets of search results sets is a potential source of significant quantities of resource classification data. In this paper we discuss work which uses coselection data (i.e. multiple click-through events generated by the same user on a single search engine result page) as an indicator of mutual relevance between web resources and a means for the automatic clustering of sense-singular resources. The results indicate that coselection can be used in this way. We ground-truthed unambiguous query clustering, forming a foundation for work on automatic ambiguity detection based on the resulting number of generated clusters. Using the cluster overlap by population principle, the extension of previous work allowed determination of synonyms or lingual translations where overlapping clusters indicated the mutual relevance in coselection and subsequently the irrelevance of the actual label inherited from the user query.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"55 1","pages":"7-16"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1995966.1995972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The interaction of vast numbers of search engine users with sets of search results sets is a potential source of significant quantities of resource classification data. In this paper we discuss work which uses coselection data (i.e. multiple click-through events generated by the same user on a single search engine result page) as an indicator of mutual relevance between web resources and a means for the automatic clustering of sense-singular resources. The results indicate that coselection can be used in this way. We ground-truthed unambiguous query clustering, forming a foundation for work on automatic ambiguity detection based on the resulting number of generated clusters. Using the cluster overlap by population principle, the extension of previous work allowed determination of synonyms or lingual translations where overlapping clusters indicated the mutual relevance in coselection and subsequently the irrelevance of the actual label inherited from the user query.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过众包共同选择的隐性关联
大量搜索引擎用户与搜索结果集集之间的交互是大量资源分类数据的潜在来源。在本文中,我们讨论了使用共选择数据(即同一用户在单个搜索引擎结果页面上产生的多个点击事件)作为web资源之间相互相关性的指标和意义单一资源自动聚类的方法的工作。结果表明,共选择可以用这种方式进行。我们建立了无歧义查询聚类,为基于生成的聚类数量的自动歧义检测工作奠定了基础。利用种群原理的聚类重叠,扩展了以前的工作,允许确定同义词或语言翻译,其中重叠的聚类表明在共选择中相互相关,随后从用户查询继承的实际标签不相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HT '22: 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June 2022- 1 July 2022 HT '21: 32nd ACM Conference on Hypertext and Social Media, Virtual Event, Ireland, 30 August 2021 - 2 September 2021 HT '20: 31st ACM Conference on Hypertext and Social Media, Virtual Event, USA, July 13-15, 2020 Detecting Changes in Suicide Content Manifested in Social Media Following Celebrity Suicides. QualityRank: assessing quality of wikipedia articles by mutually evaluating editors and texts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1