{"title":"A Generalized Classification Framework with Simultaneous Feature Weighting and Selection Using Antlion Optimization Algorithm","authors":"Manju Mohan, M. M. Ramya","doi":"10.1080/09349847.2023.2236066","DOIUrl":null,"url":null,"abstract":"ABSTRACT The use of machine-learning based algorithms on a large-scale nondestructive evaluation (NDE) data considerably advances the NDE techniques toward complete industrial automation. In this article, simultaneous feature selection and feature weighting are carried out on the magnetic Barkhausen emission (MBE) dataset to demonstrate the significance of optimization in NDE data. Antlion optimization is employed as a searching method to determine the optimum feature set that will maximize the classification performance. The proposed framework is validated for different magnetization frequencies separately and found to be frequency independent. The framework resulted in the selection of four significant features extracted from the MBE response thereby reducing the computational effort and improving the accuracy to 98.4% for AdaBoost classifier. The developed machine learning methodology is a potential strategy for processing industrial sensory data since material testing, property prediction, and categorization are frequent tasks in manufacturing and production engineering industries. Further, this research demonstrated the necessity of embedded intelligence in automation of NDE toward Industrial Revolution 4.0.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"21 1","pages":"102 - 120"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2023.2236066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The use of machine-learning based algorithms on a large-scale nondestructive evaluation (NDE) data considerably advances the NDE techniques toward complete industrial automation. In this article, simultaneous feature selection and feature weighting are carried out on the magnetic Barkhausen emission (MBE) dataset to demonstrate the significance of optimization in NDE data. Antlion optimization is employed as a searching method to determine the optimum feature set that will maximize the classification performance. The proposed framework is validated for different magnetization frequencies separately and found to be frequency independent. The framework resulted in the selection of four significant features extracted from the MBE response thereby reducing the computational effort and improving the accuracy to 98.4% for AdaBoost classifier. The developed machine learning methodology is a potential strategy for processing industrial sensory data since material testing, property prediction, and categorization are frequent tasks in manufacturing and production engineering industries. Further, this research demonstrated the necessity of embedded intelligence in automation of NDE toward Industrial Revolution 4.0.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.