Adaptive importance sampling for multilevel Monte Carlo Euler method

IF 1.1 2区 经济学 Q3 BUSINESS, FINANCE Finance and Stochastics Pub Date : 2022-06-25 DOI:10.1080/17442508.2022.2084338
M. Ben Alaya, Kaouther Hajji, Ahmed Kebaier
{"title":"Adaptive importance sampling for multilevel Monte Carlo Euler method","authors":"M. Ben Alaya, Kaouther Hajji, Ahmed Kebaier","doi":"10.1080/17442508.2022.2084338","DOIUrl":null,"url":null,"abstract":"This paper focuses on the study of an original combination of the Multilevel Monte Carlo method introduced by Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56(3) (2008), pp. 607–617.] and the popular importance sampling technique. To compute the optimal choice of the parameter involved in the importance sampling method, we rely on Robbins–Monro type stochastic algorithms. On the one hand, we extend our previous work [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947–1983.] to the Multilevel Monte Carlo setting. On the other hand, we improve [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947–1983.] by providing a new adaptive algorithm avoiding the discretization of any additional process. Furthermore, from a technical point of view, the use of the same stochastic algorithms as in [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947–1983.] appears to be problematic. To overcome this issue, we employ an alternative version of stochastic algorithms with projection (see, e.g. Laruelle, Lehalle and Pagès [Optimal posting price of limit orders: learning by trading, Math. Financ. Econ. 7(3) (2013), pp. 359–403.]). In this setting, we show innovative limit theorems for a doubly indexed stochastic algorithm which appear to be crucial to study the asymptotic behaviour of the new adaptive Multilevel Monte Carlo estimator. Finally, we illustrate the efficiency of our method through applications from quantitative finance.","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"52 1","pages":"303 - 327"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/17442508.2022.2084338","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 6

Abstract

This paper focuses on the study of an original combination of the Multilevel Monte Carlo method introduced by Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56(3) (2008), pp. 607–617.] and the popular importance sampling technique. To compute the optimal choice of the parameter involved in the importance sampling method, we rely on Robbins–Monro type stochastic algorithms. On the one hand, we extend our previous work [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947–1983.] to the Multilevel Monte Carlo setting. On the other hand, we improve [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947–1983.] by providing a new adaptive algorithm avoiding the discretization of any additional process. Furthermore, from a technical point of view, the use of the same stochastic algorithms as in [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947–1983.] appears to be problematic. To overcome this issue, we employ an alternative version of stochastic algorithms with projection (see, e.g. Laruelle, Lehalle and Pagès [Optimal posting price of limit orders: learning by trading, Math. Financ. Econ. 7(3) (2013), pp. 359–403.]). In this setting, we show innovative limit theorems for a doubly indexed stochastic algorithm which appear to be crucial to study the asymptotic behaviour of the new adaptive Multilevel Monte Carlo estimator. Finally, we illustrate the efficiency of our method through applications from quantitative finance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层蒙特卡罗欧拉法的自适应重要抽样
本文重点研究了Giles [multi - level Monte Carlo path simulation, Oper]提出的一种原始组合的多电平蒙特卡罗方法。Res. 56(3) (2008), pp. 607-617。]和流行的重要性抽样技术。为了计算重要性抽样方法中涉及的参数的最优选择,我们依靠罗宾斯-门罗型随机算法。一方面,我们扩展了以前的工作。Ben Alaya, K. Hajji和A. Kebaier,重要性抽样和统计Romberg方法,Bernoulli 21(4) (2015), pp. 1947-1983。到多层蒙特卡洛设置。另一方面,我们改进了[M]。Ben Alaya, K. Hajji和A. Kebaier,重要性抽样和统计Romberg方法,Bernoulli 21(4) (2015), pp. 1947-1983。通过提供一种新的自适应算法来避免任何额外过程的离散化。此外,从技术角度来看,使用与[M]中相同的随机算法。Ben Alaya, K. Hajji和A. Kebaier,重要性抽样和统计Romberg方法,Bernoulli 21(4) (2015), pp. 1947-1983。似乎有问题。为了克服这个问题,我们采用了带有投影的随机算法的替代版本(参见,例如Laruelle, Lehalle和pag[限价单的最优发布价格:通过交易学习,数学])。Financ。经济学,7(3)(2013),pp. 359-403。在这种情况下,我们展示了双索引随机算法的创新极限定理,这对于研究新的自适应多电平蒙特卡罗估计器的渐近行为至关重要。最后,我们通过量化金融的应用来说明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
期刊最新文献
On the Guyon–Lekeufack volatility model Stationary covariance regime for affine stochastic covariance models in Hilbert spaces Robustness of Hilbert space-valued stochastic volatility models A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets Cost-efficient payoffs under model ambiguity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1