Kinetic Study of Organic Dye Degradation Using ZnO Particles with Different Morphologies as a Photocatalyst

S. Pung, Wen-Chuan Lee, A. Aziz
{"title":"Kinetic Study of Organic Dye Degradation Using ZnO Particles with Different Morphologies as a Photocatalyst","authors":"S. Pung, Wen-Chuan Lee, A. Aziz","doi":"10.1155/2012/608183","DOIUrl":null,"url":null,"abstract":"Zinc oxide (ZnO) particles were successfully synthesized via sol-gel approach using zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and ammonia (NH4OH) solution as precursors. By adjusting the reaction parameters such as amount of ammonia and reaction time as well as complexing agent aluminium sulphate Al2(SO4)3, ZnO particles with different morphologies, that is, rodlike, ricelike and disklike could be synthesized. The effectiveness of ZnO particles with different morphologies (rodlike, ricelike and disklike) on the photocatalytic activity has been studied. The results showed that rodlike ZnO particles were the most effective in degrading the Rhodamine B (RhB) solution under the illumination of ultraviolet (UV) light. The rate constant was found to be first order, with rodlike particles the highest (0.06329 min−1), followed by rice-like ZnO particles (0.0431 min−1) and disk-like ZnO particles (0.02448 min−1).","PeriodicalId":14074,"journal":{"name":"International Journal of Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Inorganic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/608183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Zinc oxide (ZnO) particles were successfully synthesized via sol-gel approach using zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and ammonia (NH4OH) solution as precursors. By adjusting the reaction parameters such as amount of ammonia and reaction time as well as complexing agent aluminium sulphate Al2(SO4)3, ZnO particles with different morphologies, that is, rodlike, ricelike and disklike could be synthesized. The effectiveness of ZnO particles with different morphologies (rodlike, ricelike and disklike) on the photocatalytic activity has been studied. The results showed that rodlike ZnO particles were the most effective in degrading the Rhodamine B (RhB) solution under the illumination of ultraviolet (UV) light. The rate constant was found to be first order, with rodlike particles the highest (0.06329 min−1), followed by rice-like ZnO particles (0.0431 min−1) and disk-like ZnO particles (0.02448 min−1).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同形貌ZnO光催化剂降解有机染料的动力学研究
以二水合乙酸锌(Zn(CH3COO)2·2H2O)和氨(NH4OH)溶液为前驱体,采用溶胶-凝胶法制备了氧化锌(ZnO)颗粒。通过调整氨用量、反应时间等反应参数以及络合剂硫酸铝Al2(SO4)3,可以合成棒状、米状、盘状等不同形貌的ZnO颗粒。研究了不同形态(棒状、稻状和盘状)ZnO粒子对光催化活性的影响。结果表明,在紫外光照射下,棒状ZnO颗粒对罗丹明B (RhB)溶液的降解效果最好。速率常数为一级,棒状ZnO颗粒最高(0.06329 min−1),其次是米状ZnO颗粒(0.0431 min−1)和盘状ZnO颗粒(0.02448 min−1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Prediction of Bis(di-p-anisole)-1,4-azabutadiene-bis[triphenylphosphine]ruthenium(II) Using 31P NMR Spectroscopy Synthesis and Study in Solution of a New Dansyl-Modified Azacryptand Synthesis, Characterization, and Structural Assessment of Ni(II) Complexes Derived from Bis(2-hydroxy-1-naphthaldehyde)succinoyldihydrazone Synthesis, Crystal Structure, and Antimicrobial Properties of a Novel 1-D Cobalt Coordination Polymer with Dicyanamide and 2-Aminopyridine Synthesis, Characterisation, Crystal Structure, and Antimicrobial and Larvicidal Studies of [Cu(2,2′-bipy)2SO4]·3CH4N2O·2H2O
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1