Nanomedicine-Based Combination Anti-Cancer Therapy between Nucleic Acids and Anti-Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for Selective Imaging and Treatmentof Human Brain Tumors Using Hyaluronic Acid, Alguronic Acid and Sodium Hyaluronate as Anti-Cancer Nano Drugs and Nucleic Acid
{"title":"Nanomedicine-Based Combination Anti-Cancer Therapy between Nucleic Acids and Anti-Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for Selective Imaging and Treatmentof Human Brain Tumors Using Hyaluronic Acid, Alguronic Acid and Sodium Hyaluronate as Anti-Cancer Nano Drugs and Nucleic Acid","authors":"A. Heidari","doi":"10.21767/2321-547X.1000016","DOIUrl":null,"url":null,"abstract":"Nanomedicine-based combination anti-cancer therapy between nucleic acids and anti-cancer Nano drugs in covalent Nano drugs delivery systems for selective imaging and treatment of human brain tumors using hyaluronic acid, alguronic acid and sodium hyaluronate (Figures 1 and 2) as anti-cancer Nano drugs and nucleic acids delivery under synchrotron radiation has been explored as an alternative approach to the synthesis of electronically and optically active polymers with several advantages1-33. Horseradish Peroxidase (HRP) catalyzes the decomposition of Hydrogen peroxide (H2O2) at the expense of aromatic proton donors. Horseradish Peroxidase (HRP) is a Fe containing porphyrin-type structure. In previous works, we synthesized hyaluronic acid, alguronic acid and sodium hyaluronate, enzymatically1-33. The results of enzymatic polymerization were different from chemical and electrochemical polymerization of hyaluronic acid, alguronic acid and sodium hyaluronate that reported previously1-33. In this editorial, we reported the enzymatic copolymerization of aniline and hyaluronic acid, alguronic acid and sodium hyaluronate with Horseradish Peroxidase (HRP) in the presence of Sulfonated Polystyrene (SPS) as a template.","PeriodicalId":7704,"journal":{"name":"American Journal of Advanced Drug Delivery","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Advanced Drug Delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21767/2321-547X.1000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76
Abstract
Nanomedicine-based combination anti-cancer therapy between nucleic acids and anti-cancer Nano drugs in covalent Nano drugs delivery systems for selective imaging and treatment of human brain tumors using hyaluronic acid, alguronic acid and sodium hyaluronate (Figures 1 and 2) as anti-cancer Nano drugs and nucleic acids delivery under synchrotron radiation has been explored as an alternative approach to the synthesis of electronically and optically active polymers with several advantages1-33. Horseradish Peroxidase (HRP) catalyzes the decomposition of Hydrogen peroxide (H2O2) at the expense of aromatic proton donors. Horseradish Peroxidase (HRP) is a Fe containing porphyrin-type structure. In previous works, we synthesized hyaluronic acid, alguronic acid and sodium hyaluronate, enzymatically1-33. The results of enzymatic polymerization were different from chemical and electrochemical polymerization of hyaluronic acid, alguronic acid and sodium hyaluronate that reported previously1-33. In this editorial, we reported the enzymatic copolymerization of aniline and hyaluronic acid, alguronic acid and sodium hyaluronate with Horseradish Peroxidase (HRP) in the presence of Sulfonated Polystyrene (SPS) as a template.