{"title":"AUV development trends and their implications for risk management strategies","authors":"M. Brito","doi":"10.3723/UT.34.103","DOIUrl":null,"url":null,"abstract":"Autonomous underwater vehicles (AUV) have been under substantial development since the 1980s. The first AUV, the self-propelled underwater research vehicle (SPURV), was built in 1957, at the University of Washington’s Applied Physics Laboratory (Widditsch, 1973). Other early AUVs were built in the 1980s, such as the L’Epaulard and the ARCS built by the Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER, 2017) and International Submarine Engineering (ISE, 2017) respectively. Here I argue that the risk management strategy adopted in the early days is still in use for most AUV operations but is unsuitable for informing decision making for modern AUV operations. A risk management strategy, or strategic framework, is a multifaceted set of design considerations that underpin the implementation of the risk management process (Ward, 2005). It is partly concerned with the philosophical and cultural context for risk management practice, and seeks to influence and improve how people engage with problems or situations. For example, one concept commonly identified as a vital enabler for early and effective responses to possible risk is ‘mindfulness’ (Weick and Sutcliffe, 2001) which is perhaps best known as a state of mind advocated by the teachings of Buddhism where it promotes meditation in order to reflect on experiences. Mindfulness, when considered as a risk management strategy, comprises psychological techniques aimed at ensuring constant vigilance against the unexpected. It consists of a combination of on-going scrutiny of existing expectations, and continuous refinement and differentiation of expectations based on new experiences. Arguably, mindfulness was the risk management strategy adopted by the early AUV owners. One of the dangers of following a mindfulness risk management strategy is that it consumes a great deal of resources in attending to what often turn out to be false positive errors. Many AUV pioneers had only one vehicle to operate and this understandably influenced a conservative operational mindset. There was relatively little scope for experimental learning through flexibility (Hamblin, 2002). This is a risk management strategy that advocates the definition of alternative states of success and ongoing experimentation to learn and re-evaluate what success can mean. The exception to conventional AUV deployments are the long endurance missions carried out underneath ice covered areas, such as the missions of Autosub 3 under the Pine Island Glacier in 2009 and 2013 and the missions of ISE Arctic Explorer as part of the Cornerstone Project (Brito et al., 2010; 2012). Here a resilience risk management strategy was adopted, which favoured mitigation rather than a constant review of objectives. For these missions, mitigation was applied in terms of improving the robustness of design vulnerabilities and introducing a monitoring distance. The resilience philosophy seeks to manage the entire cycle of unexpected events from first detection through crisis management and eventual return to normalcy. Such mitigations were planned on a combined ex ante and ex post basis that is, through the planning of both precautionary and remedial risk controls. In the last five years, technological developments and substantial investment from both government AUV development trends and their implications for risk management strategies","PeriodicalId":44271,"journal":{"name":"UNDERWATER TECHNOLOGY","volume":"30 11 1","pages":"103-105"},"PeriodicalIF":0.4000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNDERWATER TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3723/UT.34.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Autonomous underwater vehicles (AUV) have been under substantial development since the 1980s. The first AUV, the self-propelled underwater research vehicle (SPURV), was built in 1957, at the University of Washington’s Applied Physics Laboratory (Widditsch, 1973). Other early AUVs were built in the 1980s, such as the L’Epaulard and the ARCS built by the Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER, 2017) and International Submarine Engineering (ISE, 2017) respectively. Here I argue that the risk management strategy adopted in the early days is still in use for most AUV operations but is unsuitable for informing decision making for modern AUV operations. A risk management strategy, or strategic framework, is a multifaceted set of design considerations that underpin the implementation of the risk management process (Ward, 2005). It is partly concerned with the philosophical and cultural context for risk management practice, and seeks to influence and improve how people engage with problems or situations. For example, one concept commonly identified as a vital enabler for early and effective responses to possible risk is ‘mindfulness’ (Weick and Sutcliffe, 2001) which is perhaps best known as a state of mind advocated by the teachings of Buddhism where it promotes meditation in order to reflect on experiences. Mindfulness, when considered as a risk management strategy, comprises psychological techniques aimed at ensuring constant vigilance against the unexpected. It consists of a combination of on-going scrutiny of existing expectations, and continuous refinement and differentiation of expectations based on new experiences. Arguably, mindfulness was the risk management strategy adopted by the early AUV owners. One of the dangers of following a mindfulness risk management strategy is that it consumes a great deal of resources in attending to what often turn out to be false positive errors. Many AUV pioneers had only one vehicle to operate and this understandably influenced a conservative operational mindset. There was relatively little scope for experimental learning through flexibility (Hamblin, 2002). This is a risk management strategy that advocates the definition of alternative states of success and ongoing experimentation to learn and re-evaluate what success can mean. The exception to conventional AUV deployments are the long endurance missions carried out underneath ice covered areas, such as the missions of Autosub 3 under the Pine Island Glacier in 2009 and 2013 and the missions of ISE Arctic Explorer as part of the Cornerstone Project (Brito et al., 2010; 2012). Here a resilience risk management strategy was adopted, which favoured mitigation rather than a constant review of objectives. For these missions, mitigation was applied in terms of improving the robustness of design vulnerabilities and introducing a monitoring distance. The resilience philosophy seeks to manage the entire cycle of unexpected events from first detection through crisis management and eventual return to normalcy. Such mitigations were planned on a combined ex ante and ex post basis that is, through the planning of both precautionary and remedial risk controls. In the last five years, technological developments and substantial investment from both government AUV development trends and their implications for risk management strategies