Luiz Afonso Marão, Larissa Casteluci, Ricardo V. Godoy, Henrique B. Garcia, D. V. Magalhães, G. Caurin
{"title":"Deep Reinforcement Learning Control of an Autonomous Wheeled Robot in a Challenge Task: Combined Visual and Dynamics Sensoring","authors":"Luiz Afonso Marão, Larissa Casteluci, Ricardo V. Godoy, Henrique B. Garcia, D. V. Magalhães, G. Caurin","doi":"10.1109/ICAR46387.2019.8981598","DOIUrl":null,"url":null,"abstract":"This paper presents a Deep Reinforcement Learning agent for a 4-wheeled rover in a multi-goal competition task, under the influence of noisy GPS measurements. A previous related work has implemented a similar agent to the same task using only the raw dynamics measurements as observations. The Proximal Policy Optimization algorithm combined to Universal Value Function Approximators resulted in a system able to successfully overcome very noisy GPS observations and complete the challenge task. This work introduced a frontal camera to add visual input to the rover observations during the task execution. The main change on the algorithm is on the neural networks' architectures, in which a second input layer was added to deal with the image observations. In a few alternate versions of the networks, Long Short-Term Memory (LSTM) cells were included in the architecture as well. The addition of the camera did not present a significant increase in stability or performance of the network, and the computation time require increased.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"217 1","pages":"368-373"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a Deep Reinforcement Learning agent for a 4-wheeled rover in a multi-goal competition task, under the influence of noisy GPS measurements. A previous related work has implemented a similar agent to the same task using only the raw dynamics measurements as observations. The Proximal Policy Optimization algorithm combined to Universal Value Function Approximators resulted in a system able to successfully overcome very noisy GPS observations and complete the challenge task. This work introduced a frontal camera to add visual input to the rover observations during the task execution. The main change on the algorithm is on the neural networks' architectures, in which a second input layer was added to deal with the image observations. In a few alternate versions of the networks, Long Short-Term Memory (LSTM) cells were included in the architecture as well. The addition of the camera did not present a significant increase in stability or performance of the network, and the computation time require increased.