A Markov process approach to untangling intention versus execution in tennis

IF 1.1 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Quantitative Analysis in Sports Pub Date : 2021-10-04 DOI:10.1515/jqas-2021-0077
Timothy C. Y. Chan, Douglas Fearing, Craig Fernandes, S. Kovalchik
{"title":"A Markov process approach to untangling intention versus execution in tennis","authors":"Timothy C. Y. Chan, Douglas Fearing, Craig Fernandes, S. Kovalchik","doi":"10.1515/jqas-2021-0077","DOIUrl":null,"url":null,"abstract":"Abstract Value functions are used in sports to determine the optimal action players should employ. However, most literature implicitly assumes that players can perform the prescribed action with known and fixed probability of success. The effect of varying this probability or, equivalently, “execution error” in implementing an action (e.g., hitting a tennis ball to a specific location on the court) on the design of optimal strategies, has received limited attention. In this paper, we develop a novel modeling framework based on Markov reward processes and Markov decision processes to investigate how execution error impacts a player’s value function and strategy in tennis. We power our models with hundreds of millions of simulated tennis shots with 3D ball and 2D player tracking data. We find that optimal shot selection strategies in tennis become more conservative as execution error grows, and that having perfect execution with the empirical shot selection strategy is roughly equivalent to choosing one or two optimal shots with average execution error. We find that execution error on backhand shots is more costly than on forehand shots, and that optimal shot selection on a serve return is more valuable than on any other shot, over all values of execution error.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"7 1","pages":"127 - 145"},"PeriodicalIF":1.1000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2021-0077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Value functions are used in sports to determine the optimal action players should employ. However, most literature implicitly assumes that players can perform the prescribed action with known and fixed probability of success. The effect of varying this probability or, equivalently, “execution error” in implementing an action (e.g., hitting a tennis ball to a specific location on the court) on the design of optimal strategies, has received limited attention. In this paper, we develop a novel modeling framework based on Markov reward processes and Markov decision processes to investigate how execution error impacts a player’s value function and strategy in tennis. We power our models with hundreds of millions of simulated tennis shots with 3D ball and 2D player tracking data. We find that optimal shot selection strategies in tennis become more conservative as execution error grows, and that having perfect execution with the empirical shot selection strategy is roughly equivalent to choosing one or two optimal shots with average execution error. We find that execution error on backhand shots is more costly than on forehand shots, and that optimal shot selection on a serve return is more valuable than on any other shot, over all values of execution error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种马尔可夫过程方法来解开网球中意图与执行的纠缠
在体育运动中,价值函数被用来确定运动员应该采取的最佳动作。然而,大多数文献隐含地假设玩家能够以已知和固定的成功概率执行规定的动作。在执行一个动作(例如,将网球打到球场上的特定位置)时,改变这种概率或“执行错误”对最佳策略设计的影响受到了有限的关注。本文建立了一个基于马尔可夫奖励过程和马尔可夫决策过程的建模框架,研究执行错误如何影响网球运动员的价值函数和策略。我们用数亿个模拟网球击球的3D球和2D球员跟踪数据来支持我们的模型。我们发现网球运动中最优击球选择策略随着执行误差的增大而趋于保守,使用经验击球选择策略获得完美的执行大致相当于在执行误差平均的情况下选择一个或两个最优击球。我们发现反手击球的执行失误比正手击球的代价更大,而发球回球的最佳击球选择比其他任何击球的执行失误都更有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Quantitative Analysis in Sports
Journal of Quantitative Analysis in Sports SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
2.00
自引率
12.50%
发文量
15
期刊介绍: The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.
期刊最新文献
Improving the aggregation and evaluation of NBA mock drafts A basketball paradox: exploring NBA team defensive efficiency in a positionless game Success factors in national team football: an analysis of the UEFA EURO 2020 An empirical Bayes approach for estimating skill models for professional darts players A comprehensive survey of the home advantage in American football
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1