Preliminary Connector Recognition System Based on Image Processing for Wire Harness Assembly Tasks

Francisco Yumbla, Meseret Abeyabas, T. Luong, June-sup Yi, H. Moon
{"title":"Preliminary Connector Recognition System Based on Image Processing for Wire Harness Assembly Tasks","authors":"Francisco Yumbla, Meseret Abeyabas, T. Luong, June-sup Yi, H. Moon","doi":"10.23919/ICCAS50221.2020.9268291","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze and propose a recognition process of plug-in cable connectors for wiring harness assembly tasks using image processing. For manipulation and routing of wire harness, knowing the accurate pose of the cable connector is very critical in the grasping moment. The recognition process is crucial to minimize the error in the manipulation of the connectors. Nowadays, we notice that collaborative robot manipulators or small size industrial robot manipulators attain high accuracy and repeatability levels (sub-millimeter); thus, demonstrate very precise position control capabilities. Using those capacities and with the correct recognition system, we can apply to the automation of the wire harness assembly process. For that reason, we propose a connector recognition system to obtain the precise position of the connectors on a work table; which is necessary to obtain a successful grasping and manipulation of the connectors in a wire harness. The system and the recognition process are explained in detail, and validated experimentally.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"37 4 1","pages":"1146-1150"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we analyze and propose a recognition process of plug-in cable connectors for wiring harness assembly tasks using image processing. For manipulation and routing of wire harness, knowing the accurate pose of the cable connector is very critical in the grasping moment. The recognition process is crucial to minimize the error in the manipulation of the connectors. Nowadays, we notice that collaborative robot manipulators or small size industrial robot manipulators attain high accuracy and repeatability levels (sub-millimeter); thus, demonstrate very precise position control capabilities. Using those capacities and with the correct recognition system, we can apply to the automation of the wire harness assembly process. For that reason, we propose a connector recognition system to obtain the precise position of the connectors on a work table; which is necessary to obtain a successful grasping and manipulation of the connectors in a wire harness. The system and the recognition process are explained in detail, and validated experimentally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像处理的线束装配连接器初步识别系统
本文分析并提出了一种利用图像处理技术识别线束装配任务中插入式电缆连接器的方法。在线束的操作和布线中,掌握电缆接头的准确位姿对抓握力矩至关重要。识别过程对于最小化连接器操作中的错误至关重要。如今,我们注意到协作机器人或小型工业机器人机械手达到了高精度和可重复性水平(亚毫米级);因此,展示非常精确的位置控制能力。利用这些能力和正确的识别系统,我们可以应用于线束装配过程的自动化。为此,我们提出了一种连接器识别系统,以获得连接器在工作台上的精确位置;这对于成功抓取和操纵线束中的连接器是必要的。详细介绍了该系统及其识别过程,并进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time quadrotor actuator fault detection and isolation using multivariate statistical analysis techniques with sensor measurements Autonomous docking of an Unmanned Surface Vehicle based on Reachability Analysis Clutch Torque Estimation of Ball-ramp Dual Clutch Transmission using Higher Order Disturbance Observer Robust Traffic Light Detection and Classification Under Day and Night Conditions Visual Surveillance using Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1