Inference on the maximal rank of time-varying covariance matrices using high-frequency data

M. Reiß, Lars Winkelmann
{"title":"Inference on the maximal rank of time-varying covariance matrices using high-frequency data","authors":"M. Reiß, Lars Winkelmann","doi":"10.17169/REFUBIUM-32210","DOIUrl":null,"url":null,"abstract":"We study the rank of the instantaneous or spot covariance matrix $\\Sigma_X(t)$ of a multidimensional continuous semi-martingale $X(t)$. Given high-frequency observations $X(i/n)$, $i=0,\\ldots,n$, we test the null hypothesis $rank(\\Sigma_X(t))\\le r$ for all $t$ against local alternatives where the average $(r+1)$st eigenvalue is larger than some signal detection rate $v_n$. \nA major problem is that the inherent averaging in local covariance statistics produces a bias that distorts the rank statistics. We show that the bias depends on the regularity and a spectral gap of $\\Sigma_X(t)$. We establish explicit matrix perturbation and concentration results that provide non-asymptotic uniform critical values and optimal signal detection rates $v_n$. This leads to a rank estimation method via sequential testing. For a class of stochastic volatility models, we determine data-driven critical values via normed p-variations of estimated local covariance matrices. The methods are illustrated by simulations and an application to high-frequency data of U.S. government bonds.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17169/REFUBIUM-32210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study the rank of the instantaneous or spot covariance matrix $\Sigma_X(t)$ of a multidimensional continuous semi-martingale $X(t)$. Given high-frequency observations $X(i/n)$, $i=0,\ldots,n$, we test the null hypothesis $rank(\Sigma_X(t))\le r$ for all $t$ against local alternatives where the average $(r+1)$st eigenvalue is larger than some signal detection rate $v_n$. A major problem is that the inherent averaging in local covariance statistics produces a bias that distorts the rank statistics. We show that the bias depends on the regularity and a spectral gap of $\Sigma_X(t)$. We establish explicit matrix perturbation and concentration results that provide non-asymptotic uniform critical values and optimal signal detection rates $v_n$. This leads to a rank estimation method via sequential testing. For a class of stochastic volatility models, we determine data-driven critical values via normed p-variations of estimated local covariance matrices. The methods are illustrated by simulations and an application to high-frequency data of U.S. government bonds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高频数据的时变协方差矩阵最大秩的推断
研究了多维连续半鞅$X(t)$的瞬时或点协方差矩阵$\Sigma_X(t)$的秩。给定高频观测$X(i/n)$, $i=0,\ldots,n$,我们对所有$t$的零假设$rank(\Sigma_X(t))\le r$对局部替代方案进行检验,其中平均$(r+1)$ st特征值大于某些信号检测率$v_n$。一个主要问题是局部协方差统计中固有的平均会产生偏差,从而扭曲秩统计。我们表明,偏差取决于规则性和$\Sigma_X(t)$的谱隙。我们建立了显式矩阵摄动和浓度结果,提供了非渐近均匀临界值和最佳信号检测率$v_n$。这导致了通过顺序测试的秩估计方法。对于一类随机波动模型,我们通过估计的局部协方差矩阵的归一化p变来确定数据驱动的临界值。通过模拟和对美国政府债券高频数据的应用说明了这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1