Cross-Modality Binary Code Learning via Fusion Similarity Hashing

Hong Liu, R. Ji, Yongjian Wu, Feiyue Huang, Baochang Zhang
{"title":"Cross-Modality Binary Code Learning via Fusion Similarity Hashing","authors":"Hong Liu, R. Ji, Yongjian Wu, Feiyue Huang, Baochang Zhang","doi":"10.1109/CVPR.2017.672","DOIUrl":null,"url":null,"abstract":"Binary code learning has been emerging topic in large-scale cross-modality retrieval recently. It aims to map features from multiple modalities into a common Hamming space, where the cross-modality similarity can be approximated efficiently via Hamming distance. To this end, most existing works learn binary codes directly from data instances in multiple modalities, which preserve both intra-and inter-modal similarities respectively. Few methods consider to preserve the fusion similarity among multi-modal instances instead, which can explicitly capture their heterogeneous correlation in cross-modality retrieval. In this paper, we propose a hashing scheme, termed Fusion Similarity Hashing (FSH), which explicitly embeds the graph-based fusion similarity across modalities into a common Hamming space. Inspired by the fusion by diffusion, our core idea is to construct an undirected asymmetric graph to model the fusion similarity among different modalities, upon which a graph hashing scheme with alternating optimization is introduced to learn binary codes that embeds such fusion similarity. Quantitative evaluations on three widely used benchmarks, i.e., UCI Handwritten Digit, MIR-Flickr25K and NUS-WIDE, demonstrate that the proposed FSH approach can achieve superior performance over the state-of-the-art methods.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"56 1","pages":"6345-6353"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

Abstract

Binary code learning has been emerging topic in large-scale cross-modality retrieval recently. It aims to map features from multiple modalities into a common Hamming space, where the cross-modality similarity can be approximated efficiently via Hamming distance. To this end, most existing works learn binary codes directly from data instances in multiple modalities, which preserve both intra-and inter-modal similarities respectively. Few methods consider to preserve the fusion similarity among multi-modal instances instead, which can explicitly capture their heterogeneous correlation in cross-modality retrieval. In this paper, we propose a hashing scheme, termed Fusion Similarity Hashing (FSH), which explicitly embeds the graph-based fusion similarity across modalities into a common Hamming space. Inspired by the fusion by diffusion, our core idea is to construct an undirected asymmetric graph to model the fusion similarity among different modalities, upon which a graph hashing scheme with alternating optimization is introduced to learn binary codes that embeds such fusion similarity. Quantitative evaluations on three widely used benchmarks, i.e., UCI Handwritten Digit, MIR-Flickr25K and NUS-WIDE, demonstrate that the proposed FSH approach can achieve superior performance over the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于融合相似哈希的跨模态二进制码学习
二进制码学习是近年来大规模跨模态检索研究的一个新兴课题。它旨在将多个模态的特征映射到一个共同的汉明空间中,在这个空间中,跨模态的相似性可以通过汉明距离有效地近似。为此,大多数现有工作直接从多个模态的数据实例中学习二进制代码,这分别保留了模态内和模态间的相似性。很少有方法考虑保留多模态实例之间的融合相似性,从而在跨模态检索中明确地捕获它们的异构相关性。在本文中,我们提出了一种称为融合相似哈希(FSH)的哈希方案,该方案显式地将基于图的跨模态融合相似嵌入到公共汉明空间中。受扩散融合的启发,我们的核心思想是构造一个无向非对称图来模拟不同模态之间的融合相似度,在此基础上引入交替优化的图哈希方案来学习嵌入这种融合相似度的二进制码。对三个广泛使用的基准(即UCI手写数字,MIR-Flickr25K和NUS-WIDE)的定量评估表明,所提出的FSH方法可以比最先进的方法取得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1