{"title":"Hydrodynamic limit of a stochastic model of proliferating cells with chemotaxis","authors":"R. Wieczorek","doi":"10.3934/krm.2022032","DOIUrl":null,"url":null,"abstract":"A hybrid stochastic individual-based model of proliferating cells with chemotaxis is presented. The model is expressed by a branching diffusion process coupled to a partial differential equation describing concentration of chemotactic factor. It is shown that in the hydrodynamic limit when number of cells goes to infinity the model converges to the solution of a nonconservative Patlak-Keller-Segel-type system. A nonlinear mean-field stochastic model is defined and it is proven that the movement of descendants of a single cell in the individual model converges to this mean-field process.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"157 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
A hybrid stochastic individual-based model of proliferating cells with chemotaxis is presented. The model is expressed by a branching diffusion process coupled to a partial differential equation describing concentration of chemotactic factor. It is shown that in the hydrodynamic limit when number of cells goes to infinity the model converges to the solution of a nonconservative Patlak-Keller-Segel-type system. A nonlinear mean-field stochastic model is defined and it is proven that the movement of descendants of a single cell in the individual model converges to this mean-field process.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.