Xi Li, A. Dick, Hanzi Wang, Chunhua Shen, A. Hengel
{"title":"Graph mode-based contextual kernels for robust SVM tracking","authors":"Xi Li, A. Dick, Hanzi Wang, Chunhua Shen, A. Hengel","doi":"10.1109/ICCV.2011.6126364","DOIUrl":null,"url":null,"abstract":"Visual tracking has been typically solved as a binary classification problem. Most existing trackers only consider the pairwise interactions between samples, and thereby ignore the higher-order contextual interactions, which may lead to the sensitivity to complicated factors such as noises, outliers, background clutters and so on. In this paper, we propose a visual tracker based on support vector machines (SVMs), for which a novel graph mode-based contextual kernel is designed to effectively capture the higher-order contextual information from samples. To do so, we first create a visual graph whose similarity matrix is determined by a baseline visual kernel. Second, a set of high-order contexts are discovered in the visual graph. The problem of discovering these high-order contexts is solved by seeking modes of the visual graph. Each graph mode corresponds to a vertex community termed as a high-order context. Third, we construct a contextual kernel that effectively captures the interaction information between the high-order contexts. Finally, this contextual kernel is embedded into SVMs for robust tracking. Experimental results on challenging videos demonstrate the effectiveness and robustness of the proposed tracker.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Visual tracking has been typically solved as a binary classification problem. Most existing trackers only consider the pairwise interactions between samples, and thereby ignore the higher-order contextual interactions, which may lead to the sensitivity to complicated factors such as noises, outliers, background clutters and so on. In this paper, we propose a visual tracker based on support vector machines (SVMs), for which a novel graph mode-based contextual kernel is designed to effectively capture the higher-order contextual information from samples. To do so, we first create a visual graph whose similarity matrix is determined by a baseline visual kernel. Second, a set of high-order contexts are discovered in the visual graph. The problem of discovering these high-order contexts is solved by seeking modes of the visual graph. Each graph mode corresponds to a vertex community termed as a high-order context. Third, we construct a contextual kernel that effectively captures the interaction information between the high-order contexts. Finally, this contextual kernel is embedded into SVMs for robust tracking. Experimental results on challenging videos demonstrate the effectiveness and robustness of the proposed tracker.