Approximation Algorithms for Non-Submodular Optimization Over Sliding Windows

Yunxin Luo, Chenchen Wu, Chunming Xu
{"title":"Approximation Algorithms for Non-Submodular Optimization Over Sliding Windows","authors":"Yunxin Luo, Chenchen Wu, Chunming Xu","doi":"10.1142/s021759592150038x","DOIUrl":null,"url":null,"abstract":"In this paper, the problem we study is how to maximize a monotone non-submodular function with cardinality constraint. Different from the previous streaming algorithms, this paper mainly considers the sliding window model. Based on the concept of diminishing-return ratio [Formula: see text], we propose a [Formula: see text]-approximation algorithm with the memory [Formula: see text], where [Formula: see text] is the ratio between maximum and minimum values of any singleton element of function [Formula: see text]. Then, we improve the approximation ratio to [Formula: see text] through the sub-windows at the expense of losing some memory. Our results generalize the corresponding results for the submodular case.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":"221 1","pages":"2150038:1-2150038:20"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021759592150038x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the problem we study is how to maximize a monotone non-submodular function with cardinality constraint. Different from the previous streaming algorithms, this paper mainly considers the sliding window model. Based on the concept of diminishing-return ratio [Formula: see text], we propose a [Formula: see text]-approximation algorithm with the memory [Formula: see text], where [Formula: see text] is the ratio between maximum and minimum values of any singleton element of function [Formula: see text]. Then, we improve the approximation ratio to [Formula: see text] through the sub-windows at the expense of losing some memory. Our results generalize the corresponding results for the submodular case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滑动窗口上非次模优化的近似算法
本文研究了具有基数约束的单调非次模函数的极值问题。与以往的流算法不同,本文主要考虑滑动窗口模型。基于递减回归比的概念[公式:见文],我们提出了一种具有记忆[公式:见文]的[公式:见文]-近似算法,其中[公式:见文]是函数的任意单元素的最大值与最小值之比[公式:见文]。然后,我们通过子窗口提高近似比[公式:见文本],代价是丢失一些内存。我们的结果推广了次模情况下的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uncertainty in Study of Social Networks: Robust Optimization and Machine Learning Optimality Conditions for E-Convex Interval-Valued Programming Problem Using gH-Symmetrical Derivative A Bicriterion Approach to Due Date Assignment Scheduling in Single-Machine with Position-Dependent Weights Approximation Algorithms for Spherical k-Means Problem with Penalties Using Local Search Techniques An Accelerated Three-Term Extension of a Descent Nonlinear Conjugate Gradient Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1