Optimization of array geometry for identifiable high resolution parameter estimation in sensor array signal processing

C.W. Ang, C. See, A. Kot
{"title":"Optimization of array geometry for identifiable high resolution parameter estimation in sensor array signal processing","authors":"C.W. Ang, C. See, A. Kot","doi":"10.1109/ICICS.1997.652267","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the optimization of array geometry using genetic algorithms as the optimization tool. Recent advances in array processing have been focused on developing high resolution algorithms for estimating signal parameters. The problem of optimal design of the array geometry has been neglected and therefore addressed in this paper. An optimal array geometry will correspond to one with the lowest Cramer-Rao bound (CRB) and which gives rise to minimal ambiguities at low SNR. An approach using genetic algorithms (GA) to minimise the CRB, subjected to the ambiguity constraint is proposed and implemented. By utilizing the parallel search capability of the GA, this approach constitutes an efficient design tool for the design of an array of any size and configuration. An alternative using simulated annealing is also proposed. Both approaches are shown to produce optimum array geometries that are superior to the conventional circular array in terms of accuracy and identifiability.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"221 1","pages":"1613-1617 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.652267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper is concerned with the optimization of array geometry using genetic algorithms as the optimization tool. Recent advances in array processing have been focused on developing high resolution algorithms for estimating signal parameters. The problem of optimal design of the array geometry has been neglected and therefore addressed in this paper. An optimal array geometry will correspond to one with the lowest Cramer-Rao bound (CRB) and which gives rise to minimal ambiguities at low SNR. An approach using genetic algorithms (GA) to minimise the CRB, subjected to the ambiguity constraint is proposed and implemented. By utilizing the parallel search capability of the GA, this approach constitutes an efficient design tool for the design of an array of any size and configuration. An alternative using simulated annealing is also proposed. Both approaches are shown to produce optimum array geometries that are superior to the conventional circular array in terms of accuracy and identifiability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器阵列信号处理中可识别高分辨率参数估计的阵列几何优化
本文研究了以遗传算法为优化工具的阵列几何优化问题。阵列处理的最新进展集中在开发用于估计信号参数的高分辨率算法上。阵列几何结构的优化设计问题一直被忽略,因此本文对其进行了讨论。一个最佳的阵列几何形状将对应于一个最低的Cramer-Rao边界(CRB),并在低信噪比下产生最小的模糊性。提出并实现了一种利用遗传算法在模糊约束下最小化CRB的方法。通过利用遗传算法的并行搜索能力,该方法构成了一种有效的设计工具,可用于设计任何大小和配置的阵列。还提出了一种替代的模拟退火方法。这两种方法都显示出在精度和可识别性方面优于传统圆形阵列的最佳阵列几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
期刊最新文献
HMM speech recognition with reduced training Recovering three dimenensional hand motions of sign language from monocular image sequence A full section overhead processing chip set for 10 Gbit/s SDH-based optical fiber transmission system Processing of sound field signal of a constrained panel by cross-correlation Non-Gaussian signal detection from multiple sensors using the bootstrap
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1