Boundary-structure-aware transfer functions for volume classification

Lina Yu, Hongfeng Yu
{"title":"Boundary-structure-aware transfer functions for volume classification","authors":"Lina Yu, Hongfeng Yu","doi":"10.1145/3139295.3139306","DOIUrl":null,"url":null,"abstract":"We present novel transfer functions that advance the classification of volume data by combining the advantages of the existing boundary-based and structure-based methods. We introduce the usage of the standard deviation of ambient occlusion to quantify the variation of both boundary and structure information across voxels, and name our method as boundary-structure-aware transfer functions. Our method gives concrete guidelines to better reveal the interior and exterior structures of features, especially for occluded objects without perfect homogeneous intensities. Furthermore, our method separates these patterns from other materials that may contain similar average intensities, but with different intensity variations. The proposed method extends the expressiveness and the utility of volume rendering in extracting the continuously changed patterns and achieving more robust volume classifications.","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present novel transfer functions that advance the classification of volume data by combining the advantages of the existing boundary-based and structure-based methods. We introduce the usage of the standard deviation of ambient occlusion to quantify the variation of both boundary and structure information across voxels, and name our method as boundary-structure-aware transfer functions. Our method gives concrete guidelines to better reveal the interior and exterior structures of features, especially for occluded objects without perfect homogeneous intensities. Furthermore, our method separates these patterns from other materials that may contain similar average intensities, but with different intensity variations. The proposed method extends the expressiveness and the utility of volume rendering in extracting the continuously changed patterns and achieving more robust volume classifications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于边界结构的体分类传递函数
我们提出了一种新的传递函数,通过结合现有的基于边界和基于结构的方法的优点来推进体数据的分类。我们引入了使用环境遮挡的标准偏差来量化边界和结构信息在体素之间的变化,并将我们的方法命名为边界结构感知传递函数。我们的方法给出了具体的指导方针,以更好地揭示特征的内部和外部结构,特别是对于没有完美均匀强度的遮挡物体。此外,我们的方法将这些图案与其他可能包含相似平均强度但强度变化不同的材料分开。该方法扩展了体绘制在提取连续变化模式方面的表达能力和实用性,实现了更健壮的体分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal tree reordering for group-in-a-box graph layouts Winding angle assisted particle tracing in distribution-based vector field Development of a visual analytics system for cell division dynamics in early C.elegans embryos A visual causal exploration framework case study: a torrential rain and a flash flood in Kobe city Parallel particle-based volume rendering using adaptive particle size adjustment technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1