{"title":"Boundary-structure-aware transfer functions for volume classification","authors":"Lina Yu, Hongfeng Yu","doi":"10.1145/3139295.3139306","DOIUrl":null,"url":null,"abstract":"We present novel transfer functions that advance the classification of volume data by combining the advantages of the existing boundary-based and structure-based methods. We introduce the usage of the standard deviation of ambient occlusion to quantify the variation of both boundary and structure information across voxels, and name our method as boundary-structure-aware transfer functions. Our method gives concrete guidelines to better reveal the interior and exterior structures of features, especially for occluded objects without perfect homogeneous intensities. Furthermore, our method separates these patterns from other materials that may contain similar average intensities, but with different intensity variations. The proposed method extends the expressiveness and the utility of volume rendering in extracting the continuously changed patterns and achieving more robust volume classifications.","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present novel transfer functions that advance the classification of volume data by combining the advantages of the existing boundary-based and structure-based methods. We introduce the usage of the standard deviation of ambient occlusion to quantify the variation of both boundary and structure information across voxels, and name our method as boundary-structure-aware transfer functions. Our method gives concrete guidelines to better reveal the interior and exterior structures of features, especially for occluded objects without perfect homogeneous intensities. Furthermore, our method separates these patterns from other materials that may contain similar average intensities, but with different intensity variations. The proposed method extends the expressiveness and the utility of volume rendering in extracting the continuously changed patterns and achieving more robust volume classifications.