Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein Kinase 1.

Rachel L Harold, Nikhil K Tulsian, Rajesh Narasimamurthy, Noelle Yaitanes, Maria G Ayala Hernandez, Hsiau-Wei Lee, Priya Crosby, Sarvind M Tripathi, David M Virshup, Carrie L Partch
{"title":"Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein Kinase 1.","authors":"Rachel L Harold, Nikhil K Tulsian, Rajesh Narasimamurthy, Noelle Yaitanes, Maria G Ayala Hernandez, Hsiau-Wei Lee, Priya Crosby, Sarvind M Tripathi, David M Virshup, Carrie L Partch","doi":"10.1101/2023.04.24.538174","DOIUrl":null,"url":null,"abstract":"<p><p>Casein kinase <math><mrow><mn>1</mn> <mtext>δ</mtext> <mspace></mspace> <mtext>(CK1δ)</mtext></mrow> </math> controls essential biological processes including circadian rhythms and Wnt signaling, but how its activity is regulated is not well understood. <math><mrow><mtext>CK1δ</mtext></mrow> </math> is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, <math><mrow><mtext>δ</mtext> <mn>1</mn></mrow> </math> and <math><mrow><mtext>δ</mtext> <mn>2</mn></mrow> </math> , are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C-termini (XCT), but with marked changes in potential phosphorylation sites. Here we test if the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and HDX-MS, we show that the <math><mrow><mtext>δ</mtext> <mn>1</mn></mrow> </math> XCT is preferentially phosphorylated by the kinase and the <math><mrow><mtext>δ</mtext> <mn>1</mn></mrow> </math> tail makes more extensive interactions across the kinase domain. Mutation of <math><mrow><mtext>δ1</mtext></mrow> </math> -specific XCT phosphorylation sites increases kinase activity both <i>in vitro</i> and in cells and leads to changes in circadian period, similar to what is reported <i>in vivo</i>. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. <math><mrow><mtext>δ1</mtext></mrow> </math> autoinhibition relies on conserved anion binding sites around the CK1 active site, demonstrating a common mode of product inhibition of <math><mrow><mtext>CK1δ</mtext></mrow> </math> . These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312495/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.04.24.538174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Casein kinase 1 δ (CK1δ) controls essential biological processes including circadian rhythms and Wnt signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ 1 and δ 2 , are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C-termini (XCT), but with marked changes in potential phosphorylation sites. Here we test if the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and HDX-MS, we show that the δ 1 XCT is preferentially phosphorylated by the kinase and the δ 1 tail makes more extensive interactions across the kinase domain. Mutation of δ1 -specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ . These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同工酶特异性 C 端磷酸化驱动酪蛋白激酶 1 的自身抑制。
酪蛋白激酶 1 δ(CK1δ)控制着包括昼夜节律和 Wnt 信号转导在内的重要生物过程,但其活性是如何调节的还不十分清楚。CK1δ 通过其内在无序的 C 端尾部的自身磷酸化而受到抑制。两种 CK1 剪接变体δ1 和δ2 对昼夜节律的影响截然不同。这些变体仅在尾部的最后 16 个残基(称为极 C 端(XCT))上存在差异,但在潜在的磷酸化位点上有明显变化。在此,我们测试了这些变体的 XCT 是否对激酶的自动抑制有不同的影响。通过核磁共振和 HDX-MS,我们发现δ1 的 XCT 会优先被激酶磷酸化,而δ1 的尾部则会在激酶结构域之间产生更广泛的相互作用。δ1特异性XCT磷酸化位点的突变会增加激酶在体外和细胞内的活性,并导致昼夜节律周期的变化,这与体内报告的情况类似。从机理上讲,XCT 磷酸化位点的缺失会破坏尾部与激酶结构域的相互作用。δ1的自身抑制依赖于CK1活性位点周围保守的阴离子结合位点,这证明了CK1δ产物抑制的共同模式。这些发现证明了磷酸化循环是如何控制这种重要激酶的活性的:激酶活性的微妙控制对包括昼夜节律在内的多种生理过程的生理调节至关重要。CK1δ和与之密切相关的CK1ε通过磷酸化PER2来调节昼夜节律,但激酶活性本身是如何控制的还不清楚。根据之前的观察,CK1δ的两种剪接异构体对时钟的调控不同,我们发现这种差异映射到可变剪接区(XCT)中的三个磷酸化位点,而这三个位点会导致激酶结构域的反馈抑制。更广泛地说,这些数据提出了一个通用模型,即 CK1 在不同底物上的活性可由改变尾部磷酸化的信号通路控制。这些抑制性磷酸化位点也可能成为新的治疗干预目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing adult-born neurons protects mice from epilepsy. Activity of FoxP2-positive neurons is associated with tadpole begging behavior. Preventing evolutionary rescue in cancer. Fixational Eye Movements Enhance the Precision of Visual Information Transmitted by the Primate Retina. The Evolution of Heteroresistance via Small Colony Variants in Escherichia coli Following Long Term Exposure to Bacteriostatic Antibiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1