A genetic algorithm and cell mapping hybrid method for multi-objective optimization problems

Y. Naranjani, Y. Sardahi, Jianqiao Sun
{"title":"A genetic algorithm and cell mapping hybrid method for multi-objective optimization problems","authors":"Y. Naranjani, Y. Sardahi, Jianqiao Sun","doi":"10.1109/ICEEE.2014.6978246","DOIUrl":null,"url":null,"abstract":"In this paper, a hybrid multi-objective optimization (MOO) algorithm consisting of an integration of the genetic algorithm (GA) and the simple cell mapping (SCM) is proposed. The GA converges quickly toward a solution neighborhood, but it takes a considerable amount of time to converge to the Pareto set. The SCM can find the global solution because it sweeps the whole space of interest. However, the computational effort grows exponentially with the dimension of the design space. In the hybrid algorithm, the GA is used initially to find a rough solution for the multi-objective optimization problem (MOP). Then, the SCM method takes over to find the non-dominated solutions in each region returned by the GA. It should be pointed out that one point near or on the Pareto set is enough for the SCM to recover the rest of the solution in the region. For comparison purpose, the hybrid algorithm, the GA and SCM methods are applied to solve some of benchmark problems with the Hausdorff distance, number of function evaluations and CPU time as performance metrics. The results show that the hybrid algorithm outperforms other methods with a modest computational time increase. Although the hybrid algorithm does not guarantee finding the global solution, it has much improved chance as demonstrated by one of the benchmark problems.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"243 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a hybrid multi-objective optimization (MOO) algorithm consisting of an integration of the genetic algorithm (GA) and the simple cell mapping (SCM) is proposed. The GA converges quickly toward a solution neighborhood, but it takes a considerable amount of time to converge to the Pareto set. The SCM can find the global solution because it sweeps the whole space of interest. However, the computational effort grows exponentially with the dimension of the design space. In the hybrid algorithm, the GA is used initially to find a rough solution for the multi-objective optimization problem (MOP). Then, the SCM method takes over to find the non-dominated solutions in each region returned by the GA. It should be pointed out that one point near or on the Pareto set is enough for the SCM to recover the rest of the solution in the region. For comparison purpose, the hybrid algorithm, the GA and SCM methods are applied to solve some of benchmark problems with the Hausdorff distance, number of function evaluations and CPU time as performance metrics. The results show that the hybrid algorithm outperforms other methods with a modest computational time increase. Although the hybrid algorithm does not guarantee finding the global solution, it has much improved chance as demonstrated by one of the benchmark problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标优化问题的遗传算法与细胞映射混合方法
本文提出了一种将遗传算法(GA)与简单细胞映射(SCM)相结合的混合多目标优化算法(MOO)。该算法快速收敛于解邻域,但收敛到Pareto集需要相当长的时间。SCM可以找到全局解决方案,因为它扫描了整个兴趣空间。然而,计算工作量随着设计空间的维度呈指数增长。在混合算法中,首先使用遗传算法寻找多目标优化问题(MOP)的粗糙解。然后,SCM方法接管在遗传算法返回的每个区域中寻找非支配解。应该指出的是,在Pareto集合附近或上的一个点足以使SCM恢复该区域内的其余解。为了比较,采用混合算法、遗传算法和单片机方法,以Hausdorff距离、函数评估次数和CPU时间为性能指标,解决了一些基准问题。结果表明,混合算法在计算时间适度增加的情况下优于其他方法。虽然混合算法不能保证找到全局解,但通过一个基准问题证明,混合算法的概率大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a vision algorithm for close-range relative navigation of underwater vehicles Fabrication of Pure Tin Oxide Pellets at Different Annealed Temperatures for CO and C3H8 Gas Sensors Study of sensing properties of ZnTe synthesized by mechanosynthesis for detecting gas CO ECG Arrhythmia Classification for Comparing Pre-Trained Deep Learning Models Reduction Of Energy Consumption in NoC Through The Application Of Novel Encoding Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1