Application of acoustic emission techniques and artificial neural networks to partial discharge classification

Y. Tian, Paul Lewin, A. E. Davies, S. Sutton, S. Swingler
{"title":"Application of acoustic emission techniques and artificial neural networks to partial discharge classification","authors":"Y. Tian, Paul Lewin, A. E. Davies, S. Sutton, S. Swingler","doi":"10.1109/ELINSL.2002.995895","DOIUrl":null,"url":null,"abstract":"Partial discharge (PD) detection, signal analysis and pattern identification, using acoustic emission measurements and the back-propagation (BP) artificial neural network (ANN) have been investigated. The measured signals were processed using three-dimensional patterns and short duration Fourier transforms (SDFT). Investigation indicates that using BP ANN with the SDFT components for classifying different PD patterns provides very good overall results.","PeriodicalId":10532,"journal":{"name":"Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316)","volume":"64 1","pages":"119-123"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINSL.2002.995895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Partial discharge (PD) detection, signal analysis and pattern identification, using acoustic emission measurements and the back-propagation (BP) artificial neural network (ANN) have been investigated. The measured signals were processed using three-dimensional patterns and short duration Fourier transforms (SDFT). Investigation indicates that using BP ANN with the SDFT components for classifying different PD patterns provides very good overall results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声发射技术和人工神经网络在局部放电分类中的应用
研究了基于声发射测量和反向传播人工神经网络的局部放电检测、信号分析和模式识别方法。测量信号处理采用三维模式和短时间傅里叶变换(SDFT)。研究表明,结合SDFT分量的BP神经网络对不同PD模式进行分类,总体效果很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
After-installation test of HV extruded cable insulation Experimental investigation into the thermal-ageing of Kraft paper and mineral insulating oil Enhanced online PD evaluation on power transformers using wavelet techniques and frequency rejection filter for noise suppression On-line PD detection, requirements for practical use PD site location in distribution power cables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1