Complementarities in the Production of Child Health

Angus Phimister, B. Malde, Pamela Jervis, Britta Augsburg, Laura Abramovsky
{"title":"Complementarities in the Production of Child Health","authors":"Angus Phimister, B. Malde, Pamela Jervis, Britta Augsburg, Laura Abramovsky","doi":"10.1920/WP.IFS.2019.1519","DOIUrl":null,"url":null,"abstract":"We propose to combine smoothing, simulations and sieve approximations to solve for either the integrated or expected value function in a general class of dynamic discrete choice (DDC) models. We use importance sampling to approximate the Bellman operators defining the two functions. The random Bellman operators, and therefore also the corresponding solutions, are generally non-smooth which is undesirable. To circumvent this issue, we introduce a smoothed version of the random Bellman operator and solve for the corresponding smoothed value function using sieve methods. We show that one can avoid using sieves by generalizing and adapting the `self-approximating' method of Rust (1997) to our setting. We provide an asymptotic theory for the approximate solutions and show that they converge with root-N-rate, where $N$ is number of Monte Carlo draws, towards Gaussian processes. We examine their performance in practice through a set of numerical experiments and find that both methods perform well with the sieve method being particularly attractive in terms of computational speed and accuracy.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WP.IFS.2019.1519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose to combine smoothing, simulations and sieve approximations to solve for either the integrated or expected value function in a general class of dynamic discrete choice (DDC) models. We use importance sampling to approximate the Bellman operators defining the two functions. The random Bellman operators, and therefore also the corresponding solutions, are generally non-smooth which is undesirable. To circumvent this issue, we introduce a smoothed version of the random Bellman operator and solve for the corresponding smoothed value function using sieve methods. We show that one can avoid using sieves by generalizing and adapting the `self-approximating' method of Rust (1997) to our setting. We provide an asymptotic theory for the approximate solutions and show that they converge with root-N-rate, where $N$ is number of Monte Carlo draws, towards Gaussian processes. We examine their performance in practice through a set of numerical experiments and find that both methods perform well with the sieve method being particularly attractive in terms of computational speed and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
儿童保健生产的互补性
我们建议结合平滑,模拟和筛近似来求解一般动态离散选择(DDC)模型中的积分函数或期望值函数。我们使用重要性抽样来近似定义这两个函数的Bellman算子。随机Bellman算子及其相应的解通常是非光滑的,这是不希望看到的。为了解决这个问题,我们引入了随机Bellman算子的平滑版本,并使用筛法求解相应的平滑值函数。我们表明,可以通过推广和适应Rust(1997)的“自逼近”方法来避免使用筛子。我们给出了近似解的渐近理论,并证明了它们以根N速率收敛于高斯过程,其中$N$为蒙特卡罗图的个数。通过一组数值实验验证了这两种方法的实际性能,发现两种方法都表现良好,其中筛法在计算速度和精度方面尤其具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Macroeconomic Variations after Covid-19 Estimation and Inference by Stochastic Optimization: Three Examples Testable implications of multiple equilibria in discrete games with correlated types Gaussian transforms modeling and the estimation of distributional regression functions Simple misspecification adaptive inference for interval identified parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1