T2API: synthesizing API code usage templates from English texts with statistical translation

THANH VAN NGUYEN, Peter C. Rigby, A. Nguyen, Mark Karanfil, T. Nguyen
{"title":"T2API: synthesizing API code usage templates from English texts with statistical translation","authors":"THANH VAN NGUYEN, Peter C. Rigby, A. Nguyen, Mark Karanfil, T. Nguyen","doi":"10.1145/2950290.2983931","DOIUrl":null,"url":null,"abstract":"In this work, we develop T2API, a statistical machine translation-based tool that takes a given English description of a programming task as a query, and synthesizes the API usage template for the task by learning from training data. T2API works in two steps. First, it derives the API elements relevant to the task described in the input by statistically learning from a StackOverflow corpus of text descriptions and corresponding code. To infer those API elements, it also considers the context of the words in the textual input and the context of API elements that often go together in the corpus. The inferred API elements with their relevance scores are ensembled into an API usage by our novel API usage synthesis algorithm that learns the API usages from a large code corpus via a graph-based language model. Importantly, T2API is capable of generating new API usages from smaller, previously-seen usages.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2983931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

In this work, we develop T2API, a statistical machine translation-based tool that takes a given English description of a programming task as a query, and synthesizes the API usage template for the task by learning from training data. T2API works in two steps. First, it derives the API elements relevant to the task described in the input by statistically learning from a StackOverflow corpus of text descriptions and corresponding code. To infer those API elements, it also considers the context of the words in the textual input and the context of API elements that often go together in the corpus. The inferred API elements with their relevance scores are ensembled into an API usage by our novel API usage synthesis algorithm that learns the API usages from a large code corpus via a graph-based language model. Importantly, T2API is capable of generating new API usages from smaller, previously-seen usages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T2API:通过统计翻译从英文文本中合成API代码使用模板
在这项工作中,我们开发了T2API,这是一个基于统计机器翻译的工具,它将给定的编程任务的英语描述作为查询,并通过从训练数据中学习来合成任务的API使用模板。T2API分两步工作。首先,它通过统计地从文本描述和相应代码的StackOverflow语料库中学习,派生与输入中描述的任务相关的API元素。为了推断这些API元素,它还考虑文本输入中单词的上下文和语料库中经常一起出现的API元素的上下文。通过我们新颖的API使用综合算法,将推断的API元素及其相关分数集成到API使用中,该算法通过基于图的语言模型从大型代码语料库中学习API使用。重要的是,T2API能够从较小的、以前见过的使用中生成新的API使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of fault localization techniques Model, execute, and deploy: answering the hard questions in end-user programming (showcase) Guided code synthesis using deep neural networks Automated change impact analysis between SysML models of requirements and design Sustainable software design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1