{"title":"Mobile Edge Computing Architecture Challenges, Applications, and Future Directions","authors":"B. TejaSree, G. Varma, Hemalatha Indukuri","doi":"10.4018/ijghpc.316837","DOIUrl":null,"url":null,"abstract":"In the current era of technology, the utilization of tablets and smart phones plays a major role in every situation. As the numbers of mobile users increase, the quality of service (QoS) and quality of experience (QoE) are facing the greater challenges. Thus, this can significantly reduce the latency and optimize the power consumed by the tasks executed locally. Most of the previous works are focused only on quality optimization in the dynamic service layouts. However, they ignored the significant impact of accurate access network selection and perfect service placement. This article performs the detailed survey of various MEC approaches with service provision and adoption. The survey also provides the analysis of various approaches for optimizing the QoS parameters and MEC resources. In this regarding, the survey classifies the approaches based on service placement, network selection, QoS, and QoE parameters, and resources such as latency, energy, bandwidth, memory, storage, and processing.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"43 1","pages":"1-23"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.316837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
In the current era of technology, the utilization of tablets and smart phones plays a major role in every situation. As the numbers of mobile users increase, the quality of service (QoS) and quality of experience (QoE) are facing the greater challenges. Thus, this can significantly reduce the latency and optimize the power consumed by the tasks executed locally. Most of the previous works are focused only on quality optimization in the dynamic service layouts. However, they ignored the significant impact of accurate access network selection and perfect service placement. This article performs the detailed survey of various MEC approaches with service provision and adoption. The survey also provides the analysis of various approaches for optimizing the QoS parameters and MEC resources. In this regarding, the survey classifies the approaches based on service placement, network selection, QoS, and QoE parameters, and resources such as latency, energy, bandwidth, memory, storage, and processing.